3,208 research outputs found

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Sound environment analysis in smart home

    No full text
    International audienceThis study aims at providing audio-based interaction technology that lets the users have full control over their home environment, at detecting distress situations and at easing the social inclusion of the elderly and frail population. The paper presents the sound and speech analysis system evaluated thanks to a corpus of data acquired in a real smart home environment. The 4 steps of analysis are signal detection, speech/sound discrimination, sound classification and speech recognition. The results are presented for each step and globally. The very first experiments show promising results be it for the modules evaluated independently or for the whole system

    Vehicle classification in intelligent transport systems: an overview, methods and software perspective

    Get PDF
    Vehicle Classification (VC) is a key element of Intelligent Transportation Systems (ITS). Diverse ranges of ITS applications like security systems, surveillance frameworks, fleet monitoring, traffic safety, and automated parking are using VC. Basically, in the current VC methods, vehicles are classified locally as a vehicle passes through a monitoring area, by fixed sensors or using a compound method. This paper presents a pervasive study on the state of the art of VC methods. We introduce a detailed VC taxonomy and explore the different kinds of traffic information that can be extracted via each method. Subsequently, traditional and cutting edge VC systems are investigated from different aspects. Specifically, strengths and shortcomings of the existing VC methods are discussed and real-time alternatives like Vehicular Ad-hoc Networks (VANETs) are investigated to convey physical as well as kinematic characteristics of the vehicles. Finally, we review a broad range of soft computing solutions involved in VC in the context of machine learning, neural networks, miscellaneous features, models and other methods

    Speech and Speaker Recognition for Home Automation: Preliminary Results

    No full text
    International audienceIn voice controlled multi-room smart homes ASR and speaker identification systems face distance speech conditionswhich have a significant impact on performance. Regarding voice command recognition, this paper presents an approach whichselects dynamically the best channel and adapts models to the environmental conditions. The method has been tested on datarecorded with 11 elderly and visually impaired participants in a real smart home. The voice command recognition error ratewas 3.2% in off-line condition and of 13.2% in online condition. For speaker identification, the performances were below veryspeaker dependant. However, we show a high correlation between performance and training size. The main difficulty was the tooshort utterance duration in comparison to state of the art studies. Moreover, speaker identification performance depends on the sizeof the adapting corpus and then users must record enough data before using the system

    Transfer Learning to Detect COVID-19 Coughs with Incremental Addition of Patient Coughs to Healthy People's Cough Detection Models

    Full text link
    Millions of people have died worldwide from COVID-19. In addition to its high death toll, COVID-19 has led to unbearable suffering for individuals and a huge global burden to the healthcare sector. Therefore, researchers have been trying to develop tools to detect symptoms of this human-transmissible disease remotely to control its rapid spread. Coughing is one of the common symptoms that researchers have been trying to detect objectively from smartphone microphone-sensing. While most of the approaches to detect and track cough symptoms rely on machine learning models developed from a large amount of patient data, this is not possible at the early stage of an outbreak. In this work, we present an incremental transfer learning approach that leverages the relationship between healthy peoples' coughs and COVID-19 patients' coughs to detect COVID-19 coughs with reasonable accuracy using a pre-trained healthy cough detection model and a relatively small set of patient coughs, reducing the need for large patient dataset to train the model. This type of model can be a game changer in detecting the onset of a novel respiratory virus.Comment: This paper has been accepted to publish at EAI International Conference on Wireless Mobile Communication and Healthcare (MobiHealth'23

    Context-driven encrypted multimedia traffic classification on mobile devices

    Get PDF
    The Internet has been experiencing immense growth in multimedia traffic from mobile devices. The increase in traffic presents many challenges to user-centric networks, network operators, and service providers. Foremost among these challenges is the inability of networks to determine the types of encrypted traffic and thus the level of network service the traffic needs to maintain an acceptable quality of experience. Therefore, end devices are a natural fit for performing traffic classification since end devices have more contextual information about device usage and traffic. This paper proposes a novel approach that classifies multimedia traffic types produced and consumed on mobile devices. The technique relies on a mobile device’s detection of its multimedia context characterized by its utilization of different media input/output (I/O) components, e.g., camera, microphone, and speaker. We develop an algorithm, MediaSense, which senses the states of multiple I/O components and identifies the specific multimedia context of a mobile device in real-time. We demonstrate that MediaSense classifies encrypted multimedia traffic in real-time as accurately as deep learning approaches and with even better generalizability.Peer reviewe

    Context-driven encrypted multimedia traffic classification on mobile devices

    Get PDF
    The Internet has been experiencing immense growth in multimedia traffic from mobile devices. The increase in traffic presents many challenges to user-centric networks, network operators, and service providers. Foremost among these challenges is the inability of networks to determine the types of encrypted traffic and thus the level of network service the traffic needs to maintain an acceptable quality of experience. Therefore, end devices are a natural fit for performing traffic classification since end devices have more contextual information about device usage and traffic. This paper proposes a novel approach that classifies multimedia traffic types produced and consumed on mobile devices. The technique relies on a mobile device’s detection of its multimedia context characterized by its utilization of different media input/output (I/O) components, e.g., camera, microphone, and speaker. We develop an algorithm, MediaSense, which senses the states of multiple I/O components and identifies the specific multimedia context of a mobile device in real-time. We demonstrate that MediaSense classifies encrypted multimedia traffic in real-time as accurately as deep learning approaches and with even better generalizability.Peer reviewe

    Speech analysis for Ambient Assisted Living : technical and user design of a vocal order system

    No full text
    International audienceEvolution of ICT led to the emergence of smart home. A Smart Home consists in a home equipped with data-processing technology which anticipates the needs of its inhabitant while trying to maintain their comfort and their safety by action on the house and by implementing connections with the outside world. Therefore, smart homes equipped with ambient intelligence technology constitute a promising direction to enable the growing number of elderly to continue to live in their own homes as long as possible. However, the technological solutions requested by this part of the population have to suit their specific needs and capabilities. It is obvious that these Smart Houses tend to be equipped with devices whose interfaces are increasingly complex and become difficult to control by the user. The people the most likely to benefit from these new technologies are the people in loss of autonomy such as the disabled people or the elderly which cognitive deficiencies (Alzheimer). Moreover, these people are the less capable of using the complex interfaces due to their handicap or their lack ICT understanding. Thus, it becomes essential to facilitate the daily life and the access to the whole home automation system through the smart home. The usual tactile interfaces should be supplemented by accessible interfaces, in particular, thanks to a system reactive to the voice ; these interfaces are also useful when the person cannot move easily. Vocal orders will allow the following functionality: - To ensure an assistance by a traditional or vocal order. - To set up a indirect order regulation for a better energy management. - To reinforce the link with the relatives by the integration of interfaces dedicated and adapted to the person in loss of autonomy. - To ensure more safety by detection of distress situations and when someone is breaking in the house. This chapter will describe the different steps which are needed for the conception of an audio ambient system. The first step is related to the acceptability and the objection aspects by the end users and we will report a user evaluation assessing the acceptance and the fear of this new technology. The experience aimed at testing three important aspects of speech interaction: voice command, communication with the outside world, home automation system interrupting a person's activity. The experiment was conducted in a smart home with a voice command using a Wizard of OZ technique and gave information of great interest. The second step is related to a general presentation of the audio sensing technology for ambient assisted living. Different aspect of sound and speech processing will be developed. The applications and challenges will be presented. The third step is related to speech recognition in the home environment. Automatic Speech Recognition systems (ASR) have reached good performances with close talking microphones (e.g., head-set), but the performances decrease significantly as soon as the microphone is moved away from the mouth of the speaker (e.g., when the microphone is set in the ceiling). This deterioration is due to a broad variety of effects including reverberation and presence of undetermined background noise such as TV radio and, devices. This part will present a system of vocal order recognition in distant speech context. This system was evaluated in a dedicated flat thanks to some experiments. This chapter will then conclude with a discussion on the interest of the speech modality concerning the Ambient Assisted Living

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results
    • …
    corecore