998 research outputs found

    Developing travel time estimation methods using sparse GPS data

    Get PDF
    Existing methods of estimating travel time from GPS data are not able to simultaneously take account of the issues related to uncertainties associated with GPS and spatial road network data. Moreover, they typically depend upon high frequency data sources from specialist data providers which can be expensive and are not always readily available. The study reported here therefore sought to better estimate travel time using ‘readily available’ vehicle trajectory data from moving sensors such as buses, taxis and logistical vehicles equipped with GPS in ‘near’ real-time. To do this, accurate locations of vehicles on a link were first map-matched to reduce the positioning errors associated with GPS and digital road maps. Two mathematical methods were then developed to estimate link travel times from map-matched GPS fixes, vehicle speeds and network connectivity information with a special focus on sampling frequencies, vehicle penetration rates and time window lengths. GPS data from Interstate I-880 (California, USA) for a total of 73 vehicles over 6 hours were obtained from the UC-2 Berkeley’s Mobile Century Project, and these were used to evaluate several travel time estimation methods, the results of which were then validated against reference travel time data collected from high resolution video cameras. The results indicate that vehicle penetration rates, data sampling frequencies, vehicle coverage on the links and time window lengths all influence the accuracy of link travel time estimation. The performance was found to be best in the 5 minute time window length and for a GPS sampling frequency of 60 seconds

    Developing Sampling Strategies and Predicting Freeway Travel Time Using Bluetooth Data

    Get PDF
    Accurate, reliable, and timely travel time is critical to monitor transportation system performance and assist motorists with trip-making decisions. Travel time is estimated using the data from various sources like cellular technology, automatic vehicle identification (AVI) systems. Irrespective of sources, data have characteristics in terms of accuracy and reliability shaped by the sampling rate along with other factors. As a probe based AVI technology, Bluetooth data is not immune to the sampling issue that directly affects the accuracy and reliability of the information it provides. The sampling rate can be affected by the stochastic nature of traffic state varying by time of day. A single outlier may sharply affect the travel time. This study brings attention to several crucial issues - intervals with no sample, minimum sample size and stochastic property of travel time, that play pivotal role on the accuracy and reliability of information along with its time coverage. It also demonstrates noble approaches and thus, represents a guideline for researchers and practitioner to select an appropriate interval for sample accumulation flexibly by set up the threshold guided by the nature of individual researches’ problems and preferences. After selection of an appropriate interval for sample accumulation, the next step is to estimate travel time. Travel time can be estimated either based on arrival time or based on departure time of corresponding vehicle. Considering the estimation procedure, these two are defined as arrival time based travel time (ATT) and departure time based travel time (DTT) respectively. A simple data processing algorithm, which processed more than a hundred million records reliably and efficiently, was introduced to ensure accurate estimation of travel time. Since outlier filtering plays a pivotal role in estimation accuracy, a simplified technique has proposed to filter outliers after examining several well-established outlier-filtering algorithms. In general, time of arrival is utilized to estimate overall travel time; however, travel time based on departure time (DTT) is more accurate and thus, DTT should be treated as true travel time. Accurate prediction is an integral component of calculating DTT, as real-time DTT is not available. The performances of Kalman filter (KF) were compared to corresponding modeling techniques; both link and corridor based, and concluded that the KF method offers superior prediction accuracy in link-based model. This research also examined the effect of different noise assumptions and found that the steady noise computed from full-dataset leads to the most accurate prediction. Travel time prediction had a 4.53% mean absolute percentage of error due to the effective application of KF

    Modelling real-world driving, fuel consumption and emissions of passenger vehicles : a case study in Johannesburg

    Get PDF
    D. Phil. (Energy Studies)Quantifying energy consumed and emissions produced by transport is essential for effective policy formulation and urban environmental management. Current first-world methods for determining vehicle emissions factors are technology and resource intensive, and results cannot be applied directly to cities in other parts of the world. There is a need for alternative cost-effective and accurate methods for determining real-world fuel consumption and emissions from vehicles in cities of the developing world. In this thesis, a new emissions simulation and inventory model is developed and implemented as a software tool. A novel application of low cost on-board diagnostics equipment and Global Positioning System sensors is devised to survey engine-operating parameters, driving conditions and vehicle usage profiles needed by the model. An emissions inventory is produced for the City of Johannesburg using the software tool and surveying method to demonstrate the overall process. The core contribution of this thesis is the logical development of data structures and software tools which link base engine-operating patterns (of engine speed and engine load), derived from the literature, to measured engine-operating patterns and vehicle activity from real-world driving. A range of real-world driving cycles and emission factors published by the Swiss Institute of Materials Science and Technology are transformed to produce the base engine-operating patterns and their corresponding emissions factors. The calculation of emission factors for real-world driving involves matching measured engineoperating patterns to combinations of the base engine-operating patterns using numerical methods. The method is validated using a cross validation technique. The emissions inventory application integrates measured engine-operating patterns, vehicle activity, fleet structure, fuel sales and the emissions simulation procedure to calculate total emissions. Fuel consumption and emissions of interest are CO2, CO, HC, NOx. Measurements of engine operating parameters and vehicle usage patterns were recorded for 30 privately owned passenger vehicles from the Johannesburg fleet. The selection included Euro-0 (a mixture of pre Euro-1 vehicles), Euro-2 and Euro-3 petrol vehicles, and Euro-2 diesel private passenger vehicles. Fifteen billion vehicle kilometres were driven in Johannesburg by private passenger vehicles per year consuming 325 million litres of diesel and 1 524 billion litres of petrol. iv Total emissions were estimated to be 4.13 Mt CO2, 82.77 kt CO, 9.15 kt HC, and 24.49 kt NOx. Between 88 and 93% of the total emissions were from vehicles which fall into the Euro-0 petrol category. Diesel vehicles did not make a significant contribution to CO and HC emissions but contributed 14% of the NOx and 19% of the CO2 emissions. During weekdays, 28 to 31% and 25 to 27% of the total fuel consumption and emissions were due to the morning commute and the evening commute periods respectively. Although minibus taxis, buses, freight and vehicle age significantly impact on total fuel consumption and emissions in cities they were not considered within the scope of this study. Vehicle usage patterns are analysed to produce spatial maps and diurnal charts of congestion on suburban roads, streets and highways within the Johannesburg municipal area. Times and locations of congestion are presented in terms of a standard congestion index, and suggestion given on how and where congestion problems could be addressed. This study shows that vehicle emissions inventories can be cost effectively produced by surveying engine-operating parameters and vehicle usage profiles using on-board diagnostics and Global Positioning System sensors and simulating emissions factors using a new emissions simulation and emissions inventory model

    A Kalman filter approach for exploiting bluetooth traffic data when estimating time-dependent OD matrices

    Get PDF
    Time-dependent origin–destination (OD) matrices are essential input for dynamic traffic models such as microscopic and mesoscopic traffic simulators. Dynamic traffic models also support real-time traffic management decisions, and they are traditionally used in the design and evaluation of advanced traffic traffic management and information systems (ATMS/ATIS). Time-dependent OD estimations are typically based either on Kalman filtering or on bilevel mathematical programming, which can be considered in most cases as ad hoc heuristics. The advent of the new information and communication technologies (ICT) provides new types of traffic data with higher quality and accuracy, which in turn allows new modeling hypotheses that lead to more computationally efficient algorithms. This article presents ad hoc, Kalman filtering procedures that explicitly exploit Bluetooth sensor traffic data, and it reports the numerical results from computational experiments performed at a network test site.Peer ReviewedPostprint (author’s final draft

    Travel time estimation in congested urban networks using point detectors data

    Get PDF
    A model for estimating travel time on short arterial links of congested urban networks, using currently available technology, is introduced in this thesis. The objective is to estimate travel time, with an acceptable level of accuracy for real-life traffic problems, such as congestion management and emergency evacuation. To achieve this research objective, various travel time estimation methods, including highway trajectories, multiple linear regression (MLR), artificial neural networks (ANN) and K –nearest neighbor (K-NN) were applied and tested on the same dataset. The results demonstrate that ANN and K-NN methods outperform linear methods by a significant margin, also, show particularly good performance in detecting congested intervals. To ensure the quality of the analysis results, set of procedures and algorithms based on traffic flow theory and test field information, were introduced to validate and clean the data used to build, train and test the different models

    Integrated Traffic and Communication Performance Evaluation of an Intelligent Vehicle Infrastructure Integration (VII) System for Online Travel Time Prediction

    Get PDF
    This paper presents a framework for online highway travel time prediction using traffic measurements that are likely to be available from Vehicle Infrastructure Integration (VII) systems, in which vehicle and infrastructure devices communicate to improve mobility and safety. In the proposed intelligent VII system, two artificial intelligence (AI) paradigms, namely Artificial Neural Networks (ANN) and Support Vector Regression (SVR), are used to determine future travel time based on such information as current travel time, VII-enabled vehicles’ flow and density. The development and performance evaluation of the VII-ANN and VII-SVR frameworks, in both of the traffic and communications domains, were conducted, using an integrated simulation platform, for a highway network in Greenville, South Carolina. Specifically, the simulation platform allows for implementing traffic surveillance and management methods in the traffic simulator PARAMICS, and for evaluating different communication protocols and network parameters in the communication network simulator, ns-2. The study’s findings reveal that the designed communications system was capable of supporting the travel time prediction functionality. They also demonstrate that the travel time prediction accuracy of the VII-AI framework was superior to a baseline instantaneous travel time prediction algorithm, with the VII-SVR model slightly outperforming the VII-ANN model. Moreover, the VII-AI framework was shown to be capable of performing reasonably well during non-recurrent congestion scenarios, which traditionally have challenged traffic sensor-based highway travel time prediction methods
    • …
    corecore