1,180 research outputs found

    The Discrete Logarithm Problem in Finite Fields of Small Characteristic

    Get PDF
    Computing discrete logarithms is a long-standing algorithmic problem, whose hardness forms the basis for numerous current public-key cryptosystems. In the case of finite fields of small characteristic, however, there has been tremendous progress recently, by which the complexity of the discrete logarithm problem (DLP) is considerably reduced. This habilitation thesis on the DLP in such fields deals with two principal aspects. On one hand, we develop and investigate novel efficient algorithms for computing discrete logarithms, where the complexity analysis relies on heuristic assumptions. In particular, we show that logarithms of factor base elements can be computed in polynomial time, and we discuss practical impacts of the new methods on the security of pairing-based cryptosystems. While a heuristic running time analysis of algorithms is common practice for concrete security estimations, this approach is insufficient from a mathematical perspective. Therefore, on the other hand, we focus on provable complexity results, for which we modify the algorithms so that any heuristics are avoided and a rigorous analysis becomes possible. We prove that for any prime field there exist infinitely many extension fields in which the DLP can be solved in quasi-polynomial time. Despite the two aspects looking rather independent from each other, it turns out, as illustrated in this thesis, that progress regarding practical algorithms and record computations can lead to advances on the theoretical running time analysis -- and the other way around.Die Berechnung von diskreten Logarithmen ist ein eingehend untersuchtes algorithmisches Problem, dessen Schwierigkeit zahlreiche Anwendungen in der heutigen Public-Key-Kryptographie besitzt. Für endliche Körper kleiner Charakteristik sind jedoch kürzlich erhebliche Fortschritte erzielt worden, welche die Komplexität des diskreten Logarithmusproblems (DLP) in diesem Szenario drastisch reduzieren. Diese Habilitationsschrift erörtert zwei grundsätzliche Aspekte beim DLP in Körpern kleiner Charakteristik. Es werden einerseits neuartige, erheblich effizientere Algorithmen zur Berechnung von diskreten Logarithmen entwickelt und untersucht, wobei die Laufzeitanalyse auf heuristischen Annahmen beruht. Unter anderem wird gezeigt, dass Logarithmen von Elementen der Faktorbasis in polynomieller Zeit berechnet werden können, und welche praktischen Auswirkungen die neuen Verfahren auf die Sicherheit paarungsbasierter Kryptosysteme haben. Während heuristische Laufzeitabschätzungen von Algorithmen für die konkrete Sicherheitsanalyse üblich sind, so erscheint diese Vorgehensweise aus mathematischer Sicht unzulänglich. Der Aspekt der beweisbaren Komplexität für DLP-Algorithmen konzentriert sich deshalb darauf, modifizierte Algorithmen zu entwickeln, die jegliche heuristische Annahme vermeiden und dessen Laufzeit rigoros gezeigt werden kann. Es wird bewiesen, dass für jeden Primkörper unendlich viele Erweiterungskörper existieren, für die das DLP in quasi-polynomieller Zeit gelöst werden kann. Obwohl die beiden Aspekte weitgehend unabhängig voneinander erscheinen mögen, so zeigt sich, wie in dieser Schrift illustriert wird, dass Fortschritte bei praktischen Algorithmen und Rekordberechnungen auch zu Fortentwicklungen bei theoretischen Laufzeitabschätzungen führen -- und umgekehrt

    Optimal TNFS-secure pairings on elliptic curves with composite embedding degree

    Get PDF
    In this paper we present a comprehensive comparison between pairing-friendly elliptic curves, considering di erent curve forms and twists where possible. We de ne an additional measure of the e- ciency of a parametrized pairing-friendly family that takes into account the number eld sieve (NFS) attacks (unlike the -value). This measure includes an approximation of the security of the discrete logarithm problem in F pk , computed via the method of Barbulescu and Duquesne [4]. We compute the security of the families presented by Fotiadis and Konstantinou in [14], compute some new families, and compare the eciency of both of these with the (adjusted) BLS, KSS, and BN families, and with the new families of [20]. Finally, we recommend pairing-friendly elliptic curves for security levels 128 and 192

    Integer factorization and discrete logarithm problems

    Get PDF
    Notes d'un cours donné aux Journées Nationales de Calcul FormelThese are notes for a lecture given at CIRM in 2014, for the Journées Nationales du Calcul Formel. We explain the basic algorithms based on combining congruences for solving the integer factorization and the discrete logarithm problems. We highlight two particular situations where the interaction with symbolic computation is visible: the use of Gröbner basis in Joux's algorithm for discrete logarithm in nite eld of small characteristic, and the exact sparse linear algebra tools that occur in the Number Field Sieve algorithm for discrete logarithm in large characteristic

    Cryptographic Hash Functions in Groups and Provable Properties

    Get PDF
    We consider several "provably secure" hash functions that compute simple sums in a well chosen group (G,*). Security properties of such functions provably translate in a natural way to computational problems in G that are simple to define and possibly also hard to solve. Given k disjoint lists Li of group elements, the k-sum problem asks for gi ∊ Li such that g1 * g2 *...* gk = 1G. Hardness of the problem in the respective groups follows from some "standard" assumptions used in public-key cryptology such as hardness of integer factoring, discrete logarithms, lattice reduction and syndrome decoding. We point out evidence that the k-sum problem may even be harder than the above problems. Two hash functions based on the group k-sum problem, SWIFFTX and FSB, were submitted to NIST as candidates for the future SHA-3 standard. Both submissions were supported by some sort of a security proof. We show that the assessment of security levels provided in the proposals is not related to the proofs included. The main claims on security are supported exclusively by considerations about available attacks. By introducing "second-order" bounds on bounds on security, we expose the limits of such an approach to provable security. A problem with the way security is quantified does not necessarily mean a problem with security itself. Although FSB does have a history of failures, recent versions of the two above functions have resisted cryptanalytic efforts well. This evidence, as well as the several connections to more standard problems, suggests that the k-sum problem in some groups may be considered hard on its own, and possibly lead to provable bounds on security. Complexity of the non-trivial tree algorithm is becoming a standard tool for measuring the associated hardness. We propose modifications to the multiplicative Very Smooth Hash and derive security from multiplicative k-sums in contrast to the original reductions that related to factoring or discrete logarithms. Although the original reductions remain valid, we measure security in a new, more aggressive way. This allows us to relax the parameters and hash faster. We obtain a function that is only three times slower compared to SHA-256 and is estimated to offer at least equivalent collision resistance. The speed can be doubled by the use of a special modulus, such a modified function is supported exclusively by the hardness of multiplicative k-sums modulo a power of two. Our efforts culminate in a new multiplicative k-sum function in finite fields that further generalizes the design of Very Smooth Hash. In contrast to the previous variants, the memory requirements of the new function are negligible. The fastest instance of the function expected to offer 128-bit collision resistance runs at 24 cycles per byte on an Intel Core i7 processor and approaches the 17.4 figure of SHA-256. The new functions proposed in this thesis do not provably achieve a usual security property such as preimage or collision resistance from a well-established assumption. They do however enjoy unconditional provable separation of inputs that collide. Changes in input that are small with respect to a well defined measure never lead to identical output in the compression function
    corecore