2,578 research outputs found

    Word Embeddings for Entity-annotated Texts

    Full text link
    Learned vector representations of words are useful tools for many information retrieval and natural language processing tasks due to their ability to capture lexical semantics. However, while many such tasks involve or even rely on named entities as central components, popular word embedding models have so far failed to include entities as first-class citizens. While it seems intuitive that annotating named entities in the training corpus should result in more intelligent word features for downstream tasks, performance issues arise when popular embedding approaches are naively applied to entity annotated corpora. Not only are the resulting entity embeddings less useful than expected, but one also finds that the performance of the non-entity word embeddings degrades in comparison to those trained on the raw, unannotated corpus. In this paper, we investigate approaches to jointly train word and entity embeddings on a large corpus with automatically annotated and linked entities. We discuss two distinct approaches to the generation of such embeddings, namely the training of state-of-the-art embeddings on raw-text and annotated versions of the corpus, as well as node embeddings of a co-occurrence graph representation of the annotated corpus. We compare the performance of annotated embeddings and classical word embeddings on a variety of word similarity, analogy, and clustering evaluation tasks, and investigate their performance in entity-specific tasks. Our findings show that it takes more than training popular word embedding models on an annotated corpus to create entity embeddings with acceptable performance on common test cases. Based on these results, we discuss how and when node embeddings of the co-occurrence graph representation of the text can restore the performance.Comment: This paper is accepted in 41st European Conference on Information Retrieva

    Deep Multimodal Image-Repurposing Detection

    Full text link
    Nefarious actors on social media and other platforms often spread rumors and falsehoods through images whose metadata (e.g., captions) have been modified to provide visual substantiation of the rumor/falsehood. This type of modification is referred to as image repurposing, in which often an unmanipulated image is published along with incorrect or manipulated metadata to serve the actor's ulterior motives. We present the Multimodal Entity Image Repurposing (MEIR) dataset, a substantially challenging dataset over that which has been previously available to support research into image repurposing detection. The new dataset includes location, person, and organization manipulations on real-world data sourced from Flickr. We also present a novel, end-to-end, deep multimodal learning model for assessing the integrity of an image by combining information extracted from the image with related information from a knowledge base. The proposed method is compared against state-of-the-art techniques on existing datasets as well as MEIR, where it outperforms existing methods across the board, with AUC improvement up to 0.23.Comment: To be published at ACM Multimeda 2018 (orals

    Extended Vector Space Model with Semantic Relatedness on Java Archive Search Engine

    Full text link
    Byte code as information source is a novel approach which enable Java archive search engine to be built without relying on another resources except the Java archive itself [1]. Unfortunately, its effectiveness is not considerably high since some relevant documents may not be retrieved because of vocabulary mismatch. In this research, a vector space model (VSM) is extended with semantic relatedness to overcome vocabulary mismatch issue in Java archive search engine. Aiming the most effective retrieval model, some sort of equations in retrieval models are also proposed and evaluated such as sum up all related term, substituting non-existing term with most related term, logaritmic normalization, context-specific relatedness, and low-rank query-related retrieved documents. In general, semantic relatedness improves recall as a tradeoff of its precision reduction. We also proposed a scheme to take the advantage of relatedness without affected by its disadvantage (VSM + considering non-retrieved documents as low-rank retrieved documents using semantic relatedness). This scheme assures that relatedness score should be ranked lower than standard exact-match score. This scheme yields 1.754% higher effectiveness than our standard VSM

    Semantic Sort: A Supervised Approach to Personalized Semantic Relatedness

    Full text link
    We propose and study a novel supervised approach to learning statistical semantic relatedness models from subjectively annotated training examples. The proposed semantic model consists of parameterized co-occurrence statistics associated with textual units of a large background knowledge corpus. We present an efficient algorithm for learning such semantic models from a training sample of relatedness preferences. Our method is corpus independent and can essentially rely on any sufficiently large (unstructured) collection of coherent texts. Moreover, the approach facilitates the fitting of semantic models for specific users or groups of users. We present the results of extensive range of experiments from small to large scale, indicating that the proposed method is effective and competitive with the state-of-the-art.Comment: 37 pages, 8 figures A short version of this paper was already published at ECML/PKDD 201

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field
    corecore