2,661 research outputs found

    A Generalized Timed Petri Net Model for Performance Analysis

    Full text link

    M-timed Petri nets, priorities, preemptions, and performance evaluation of systems

    Get PDF
    In M-timed Petri nets, firing times are exponentially distributed random variables associated with transitions of a net. Several classes of M-timed Petri nets are discussed in this paper to show increasing “modelling power” of different nets. Conflict-free nets can model M- and E k -type queueing systems. Free-choice nets can also represent H k -type systems. Systems with several classes of users and with service priorities assigned to user classes require nets with inhibitor arcs. Preemption of service can be represented by extended nets with escape (or generalized inhibitor) arcs. Finally, to provide flexible modelling of scheduling and decision strategies, enhanced Petri nets are introduced with two classes of transitions, immediate and timed ones, and with (exponentially distributed) firing times associated with the timed transitions. It is shown that the behavior of bounded M-timed Petri nets can be represented by finite “state” graphs which are finite-state continuous-time homogeneous Markov processes. Stationary probabilities of states can thus be obtained by standard techniques used for analysis of Markov chains, and then operational analysis can be applied for performance evaluation. Simple models of interactive systems are used as an illustration of modelling

    Performance modeling of e-procurement workflow using Generalised Stochastic Petri net (GSPN)

    Get PDF
    This paper proposes a Generalised Stochastic Petri net (GSPN) model representing a generic e-procurement workflow process. The model displays the dynamic behaviour of the system and shows the inter relationship of process activities. An analysis based on matrix equation approach enabled users to analyse the critical system's states, and thus justify the process performance. The results obtained allow users for better decision making in improving e-procurement workflow performance

    The derivation of performance expressions for communication protocols from timed Petri net models

    Get PDF
    Petri Net models have been extended in a variety of ways and have been used to prove the correctness and evaluate the performance of communication protocols. Several extensions have been proposed to model time. This work uses a form of Timed Petri Nets and presents a technique for symbolically deriving expressions which describe system performance. Unlike past work on performance evaluation of Petri Nets which assumes a priori knowledge of specific time delays, the technique presented here applies to a wide range of time delays so long as the delays satisfy a set of timing constraints. The technique is demonstrated using a simple communication protocol

    Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets

    Get PDF
    © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Using classical combinatorial fault trees, analysts are able to assess the effects of combinations of failures on system behaviour but are unable to capture sequence dependent dynamic behaviour. Pandora introduces temporal gates and temporal laws to fault trees to allow sequence-dependent dynamic analysis of events. Pandora can be easily integrated in model-based design and analysis techniques; however, the combinatorial quantification techniques used to solve classical fault trees cannot be applied to temporal fault trees. Temporal fault trees capture state and therefore require a state space solution for quantification of probability. In this paper, we identify Petri Nets as a possible framework for quantifying temporal trees. We describe how Pandora fault trees can be mapped to Petri Nets for dynamic dependability analysis and demonstrate the process on a fault tolerant fuel distribution system model

    Generalized Asynchronous Systems

    Full text link
    The paper is devoted to a mathematical model of concurrency the special case of which is asynchronous system. Distributed asynchronous automata are introduced here. It is proved that the Petri nets and transition systems with independence can be considered like the distributed asynchronous automata. Time distributed asynchronous automata are defined in standard way by the map which assigns time intervals to events. It is proved that the time distributed asynchronous automata are generalized the time Petri nets and asynchronous systems.Comment: 8 page

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Hybrid Petri net model of a traffic intersection in an urban network

    Get PDF
    Control in urban traffic networks constitutes an important and challenging research topic nowadays. In the literature, a lot of work can be found devoted to improving the performance of the traffic flow in such systems, by means of controlling the red-to-green switching times of traffic signals. Different techniques have been proposed and commercially implemented, ranging from heuristic methods to model-based optimization. However, given the complexity of the dynamics and the scale of urban traffic networks, there is still a lot of scope for improvement. In this work, a new hybrid model for the traffic behavior at an intersection is introduced. It captures important aspects of the flow dynamics in urban networks. It is shown how this model can be used in order to obtain control strategies that improve the flow of traffic at intersections, leading to the future possibility of controlling several connected intersections in a distributed way
    corecore