30,806 research outputs found

    Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    Get PDF
    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints

    Whirling skirts and rotating cones

    Full text link
    Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, aNoether is the current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented which bear a suggestive resemblance to the observed patterns.Comment: two additional figures, changes to text throughout. journal version will have a wordier abstrac

    The generalized identification of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces

    Get PDF
    We present a generalized version of the ITIM algorithm for the identification of interfacial molecules, which is able to treat arbitrarily shaped interfaces. The algorithm exploits the similarities between the concept of probe sphere used in ITIM and the circumsphere criterion used in the α-shapes approach, and can be regarded either as a reference-frame independent version of the former, or as an extended version of the latter that includes the atomic excluded volume. The new algorithm is applied to compute the intrinsic orientational order parameters of water around a dodecylphosphocholine and a cholic acid micelle in aqueous environment, and to the identification of solvent-reachable sites in four model structures for soot. The additional algorithm introduced for the calculation of intrinsic density profiles in arbitrary geometries proved to be extremely useful also for planar interfaces, as it allows to solve the paradox of smeared intrinsic profiles far from the interface. © 2013 American Institute of Physics

    Cell body rocking is a dominant mechanism for flagellar synchronization in a swimming alga

    Full text link
    The unicellular green algae Chlamydomonas swims with two flagella, which can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this `cell body rocking' provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the coupling between flagellar beating and cell body rocking predicted by our theory. This work appeared also in the Proceedings of the National Academy of Science of the U.S.A as: Geyer et al., PNAS 110(45), p. 18058(6), 2013.Comment: 40 pages, 15 color figure

    A kinematically exact finite element formulation of planar elastic-plastic frames

    Get PDF
    A finite element formulation of finite deformation static analysis of plane elastic-plastic frames subjected to static loads is presented, in which the only function to be interpolated is the rotation of the centroid axis of the beam. One of the advantages of such a formulation is that the problem of the field-consistency does not arise. Exact non-linear kinematic relationships of the finite-strain beam theory are used, which assume the Bernoulli hypothesis of plane cross-sections. Finite displacements and rotations as well as finite extensional and bending strains are accounted for. The effects of shear strains and non-conservative loads are at present neglected, yet they can simply be incorporated in the formulation. Because the potential energy of internal forces does not exist with elastic-plastic material, the principle of virtual work is introduced as the basis of the finite element formulation. A generalized principle of virtual work is proposed in which the displacements, rotation, extensional and bending strains, and the Lagrangian multipliers are independent variables. By exploiting the special structure of the equations of the problem, the displacements, the strains and the multipliers are eliminated from the generalized principle of virtual work. A novel principle is obtained in which the rotation becomes the only function to be approximated in its finite element implementation. It is shown that (N-1)-point numerical integration must be employed in conjunction with N-node interpolation polynomials for the rotation, and the Lobatto rule is recommended. Regarding the integration over the cross-section, it is demonstrated by numerical examples that, due to discontinuous integrands, no integration order defined as `computationally efficient yet accurate enough' could be suggested. The theoretical findings and a nice performance of the derived finite elements are illustrated by numerical examples

    Geometry of membranes

    Full text link
    This review reports some theoretical results on the Geometry of membranes. The governing equations to describe equilibrium configurations of lipid vesicles, lipid membranes with free edges, and chiral lipid membranes are derived from the variation of free energies of these structures. Some analytic solutions to these equations and their corresponding configurations are also shown.Comment: Review for JGSP. 31 pages, 13 figure

    A kinematically exact finite element formulation of elastic-plastic curved beams

    Get PDF
    A finite element, large displacement formulation of static elastic-plastic analysis of slender arbitrarily curved planar beams is presented. Non-conservative and dynamic loads are sit present not included. The Bernoulli hypothesis of plane cross-sections is assumed and the effect of hear strains is neglected. Exact non-linear kinematic equations of curved beams, derived by Reissner are incorporated into;a generalized principle of virtual work through Lagrangian multipliers. The only function that has to be interpolated in the finite element implementation is the rotation of the centroid axis of a beam. This is an important advantage over other classical displacement approaches since the field consistency problem and related locking phenomena do not arise. Numerical examples, comprising elastic and elastic-plastic, curved and straight beams, at large displacements and rotations, show very nice computational and accuracy characteristics of the present family of finite elements. The comparisons with other published results very clearly show the superior performance of the present elements. (C) 1998 Elsevier Science Ltd. All rights reserved
    corecore