5,501 research outputs found

    Hidden Markov Models for Gene Sequence Classification: Classifying the VSG genes in the Trypanosoma brucei Genome

    Full text link
    The article presents an application of Hidden Markov Models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the Variant Surface Glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host's immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM.Comment: Accepted article in July, 2015 in Pattern Analysis and Applications, Springer. The article contains 23 pages, 4 figures, 8 tables and 51 reference

    Distributions associated with general runs and patterns in hidden Markov models

    Full text link
    This paper gives a method for computing distributions associated with patterns in the state sequence of a hidden Markov model, conditional on observing all or part of the observation sequence. Probabilities are computed for very general classes of patterns (competing patterns and generalized later patterns), and thus, the theory includes as special cases results for a large class of problems that have wide application. The unobserved state sequence is assumed to be Markovian with a general order of dependence. An auxiliary Markov chain is associated with the state sequence and is used to simplify the computations. Two examples are given to illustrate the use of the methodology. Whereas the first application is more to illustrate the basic steps in applying the theory, the second is a more detailed application to DNA sequences, and shows that the methods can be adapted to include restrictions related to biological knowledge.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS125 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Mathematics of Phylogenomics

    Get PDF
    The grand challenges in biology today are being shaped by powerful high-throughput technologies that have revealed the genomes of many organisms, global expression patterns of genes and detailed information about variation within populations. We are therefore able to ask, for the first time, fundamental questions about the evolution of genomes, the structure of genes and their regulation, and the connections between genotypes and phenotypes of individuals. The answers to these questions are all predicated on progress in a variety of computational, statistical, and mathematical fields. The rapid growth in the characterization of genomes has led to the advancement of a new discipline called Phylogenomics. This discipline results from the combination of two major fields in the life sciences: Genomics, i.e., the study of the function and structure of genes and genomes; and Molecular Phylogenetics, i.e., the study of the hierarchical evolutionary relationships among organisms and their genomes. The objective of this article is to offer mathematicians a first introduction to this emerging field, and to discuss specific mathematical problems and developments arising from phylogenomics.Comment: 41 pages, 4 figure

    DNA ANALYSIS USING GRAMMATICAL INFERENCE

    Get PDF
    An accurate language definition capable of distinguishing between coding and non-coding DNA has important applications and analytical significance to the field of computational biology. The method proposed here uses positive sample grammatical inference and statistical information to infer languages for coding DNA. An algorithm is proposed for the searching of an optimal subset of input sequences for the inference of regular grammars by optimizing a relevant accuracy metric. The algorithm does not guarantee the finding of the optimal subset; however, testing shows improvement in accuracy and performance over the basis algorithm. Testing shows that the accuracy of inferred languages for components of DNA are consistently accurate. By using the proposed algorithm languages are inferred for coding DNA with average conditional probability over 80%. This reveals that languages for components of DNA can be inferred and are useful independent of the process that created them. These languages can then be analyzed or used for other tasks in computational biology. To illustrate potential applications of regular grammars for DNA components, an inferred language for exon sequences is applied as post processing to Hidden Markov exon prediction to reduce the number of wrong exons detected and improve the specificity of the model significantly

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Genomics and proteomics: a signal processor's tour

    Get PDF
    The theory and methods of signal processing are becoming increasingly important in molecular biology. Digital filtering techniques, transform domain methods, and Markov models have played important roles in gene identification, biological sequence analysis, and alignment. This paper contains a brief review of molecular biology, followed by a review of the applications of signal processing theory. This includes the problem of gene finding using digital filtering, and the use of transform domain methods in the study of protein binding spots. The relatively new topic of noncoding genes, and the associated problem of identifying ncRNA buried in DNA sequences are also described. This includes a discussion of hidden Markov models and context free grammars. Several new directions in genomic signal processing are briefly outlined in the end

    Hybrid modeling, HMM/NN architectures, and protein applications

    Get PDF
    We describe a hybrid modeling approach where the parameters of a model are calculated and modulated by another model, typically a neural network (NN), to avoid both overfitting and underfitting. We develop the approach for the case of Hidden Markov Models (HMMs), by deriving a class of hybrid HMM/NN architectures. These architectures can be trained with unified algorithms that blend HMM dynamic programming with NN backpropagation. In the case of complex data, mixtures of HMMs or modulated HMMs must be used. NNs can then be applied both to the parameters of each single HMM, and to the switching or modulation of the models, as a function of input or context. Hybrid HMM/NN architectures provide a flexible NN parameterization for the control of model structure and complexity. At the same time, they can capture distributions that, in practice, are inaccessible to single HMMs. The HMM/NN hybrid approach is tested, in its simplest form, by constructing a model of the immunoglobulin protein family. A hybrid model is trained, and a multiple alignment derived, with less than a fourth of the number of parameters used with previous single HMMs
    corecore