42 research outputs found

    Tool for robust stochastic parsing using optimal maximum coverage

    Get PDF
    This report presents a robust syntactic parser that is able to return a "correct" derivation tree even if the grammar cannot generate the input sentence. The following two step solution is prop osed: the finest corresponding most probable optimal maximum coverage is generated first, then the trees from this coverage are glued into one resulting tree. We discuss the implementation of this method with the SLP toolkit and libkp library

    Network Analysis with Stochastic Grammars

    Get PDF
    Digital forensics requires significant manual effort to identify items of evidentiary interest from the ever-increasing volume of data in modern computing systems. One of the tasks digital forensic examiners conduct is mentally extracting and constructing insights from unstructured sequences of events. This research assists examiners with the association and individualization analysis processes that make up this task with the development of a Stochastic Context -Free Grammars (SCFG) knowledge representation for digital forensics analysis of computer network traffic. SCFG is leveraged to provide context to the low-level data collected as evidence and to build behavior profiles. Upon discovering patterns, the analyst can begin the association or individualization process to answer criminal investigative questions. Three contributions resulted from this research. First , domain characteristics suitable for SCFG representation were identified and a step -by- step approach to adapt SCFG to novel domains was developed. Second, a novel iterative graph-based method of identifying similarities in context-free grammars was developed to compare behavior patterns represented as grammars. Finally, the SCFG capabilities were demonstrated in performing association and individualization in reducing the suspect pool and reducing the volume of evidence to examine in a computer network traffic analysis use case

    Fragment Grammars: Exploring Computation and Reuse in Language

    Get PDF
    Language relies on a division of labor between stored units and structure building operations which combine the stored units into larger structures. This division of labor leads to a tradeoff: more structure-building means less need to store while more storage means less need to compute structure. We develop a hierarchical Bayesian model called fragment grammar to explore the optimum balance between structure-building and reuse. The model is developed in the context of stochastic functional programming (SFP) and in particular using a probabilistic variant of Lisp known as the Church programming language (Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum, 2008). We show how to formalize several probabilistic models of language structure using Church, and how fragment grammar generalizes one of them---adaptor grammars (Johnson, Griffiths, & Goldwater, 2007). We conclude with experimental data with adults and preliminary evaluations of the model on natural language corpus data

    Offline grammar-based recognition of handwritten sentences

    Full text link
    corecore