140 research outputs found

    Markov semigroups, monoids, and groups

    Full text link
    A group is Markov if it admits a prefix-closed regular language of unique representatives with respect to some generating set, and strongly Markov if it admits such a language of unique minimal-length representatives over every generating set. This paper considers the natural generalizations of these concepts to semigroups and monoids. Two distinct potential generalizations to monoids are shown to be equivalent. Various interesting examples are presented, including an example of a non-Markov monoid that nevertheless admits a regular language of unique representatives over any generating set. It is shown that all finitely generated commutative semigroups are strongly Markov, but that finitely generated subsemigroups of virtually abelian or polycyclic groups need not be. Potential connections with word-hyperbolic semigroups are investigated. A study is made of the interaction of the classes of Markov and strongly Markov semigroups with direct products, free products, and finite-index subsemigroups and extensions. Several questions are posed.Comment: 40 pages; 3 figure

    Varieties of Data Languages

    Get PDF
    We establish an Eilenberg-type correspondence for data languages, i.e. languages over an infinite alphabet. More precisely, we prove that there is a bijective correspondence between varieties of languages recognized by orbit-finite nominal monoids and pseudovarieties of such monoids. This is the first result of this kind for data languages. Our approach makes use of nominal Stone duality and a recent category theoretic generalization of Birkhoff-type HSP theorems that we instantiate here for the category of nominal sets. In addition, we prove an axiomatic characterization of weak pseudovarieties as those classes of orbit-finite monoids that can be specified by sequences of nominal equations, which provides a nominal version of a classical theorem of Eilenberg and Sch\"utzenberger

    Finite convergent presentations of plactic monoids for semisimple lie algebras

    Full text link
    We study rewriting properties of the column presentation of plactic monoid for any semisimple Lie algebra such as termination and confluence. Littelmann described this presentation using L-S paths generators. Thanks to the shapes of tableaux, we show that this presentation is finite and convergent. We obtain as a corollary that plactic monoids for any semisimple Lie algebra satisfy homological finiteness properties

    Nominal Topology for Data Languages

    Get PDF

    Varieties of Data Languages

    Get PDF
    We establish an Eilenberg-type correspondence for data languages, i.e. languages over an infinite alphabet. More precisely, we prove that there is a bijective correspondence between varieties of languages recognized by orbit-finite nominal monoids and pseudovarieties of such monoids. This is the first result of this kind for data languages. Our approach makes use of nominal Stone duality and a recent category theoretic generalization of Birkhoff-type HSP theorems that we instantiate here for the category of nominal sets. In addition, we prove an axiomatic characterization of weak pseudovarieties as those classes of orbit-finite monoids that can be specified by sequences of nominal equations, which provides a nominal version of a classical theorem of Eilenberg and Sch\"utzenberger

    On a Product of Finite Monoids

    Get PDF
    In this paper, for each positive integer m, we associate with a finite monoid S0 and m finite commutative monoids S1,…, Sm, a product &#x25CAm(Sm,…, S1, S0). We give a representation of the free objects in the pseudovariety &#x25CAm(Wm,…, W1, W0) generated by these (m + 1)-ary products where Si &#x2208 Wi for all 0 &#x2264 i &#x2264 m. We then give, in particular, a criterion to determine when an identity holds in &#x25CAm(J1,…, J1, J1) with the help of a version of the Ehrenfeucht-Fraïssé game (J1 denotes the pseudovariety of all semilattice monoids). The union &#x222Am>0&#x25CAm (J1,…, J1, J1) turns out to be the second level of the Straubing’s dot-depth hierarchy of aperiodic monoids
    • …
    corecore