100 research outputs found

    An Upper Bound on the Capacity of non-Binary Deletion Channels

    Get PDF
    We derive an upper bound on the capacity of non-binary deletion channels. Although binary deletion channels have received significant attention over the years, and many upper and lower bounds on their capacity have been derived, such studies for the non-binary case are largely missing. The state of the art is the following: as a trivial upper bound, capacity of an erasure channel with the same input alphabet as the deletion channel can be used, and as a lower bound the results by Diggavi and Grossglauser are available. In this paper, we derive the first non-trivial non-binary deletion channel capacity upper bound and reduce the gap with the existing achievable rates. To derive the results we first prove an inequality between the capacity of a 2K-ary deletion channel with deletion probability dd, denoted by C2K(d)C_{2K}(d), and the capacity of the binary deletion channel with the same deletion probability, C2(d)C_2(d), that is, C2K(d)C2(d)+(1d)log(K)C_{2K}(d)\leq C_2(d)+(1-d)\log(K). Then by employing some existing upper bounds on the capacity of the binary deletion channel, we obtain upper bounds on the capacity of the 2K-ary deletion channel. We illustrate via examples the use of the new bounds and discuss their asymptotic behavior as d0d \rightarrow 0.Comment: accepted for presentation in ISIT 201

    Memory effects can make the transmission capability of a communication channel uncomputable

    Full text link
    Most communication channels are subjected to noise. One of the goals of Information Theory is to add redundancy in the transmission of information so that the information is transmitted reliably and the amount of information transmitted through the channel is as large as possible. The maximum rate at which reliable transmission is possible is called the capacity. If the channel does not keep memory of its past, the capacity is given by a simple optimization problem and can be efficiently computed. The situation of channels with memory is less clear. Here we show that for channels with memory the capacity cannot be computed to within precision 1/5. Our result holds even if we consider one of the simplest families of such channels -information-stable finite state machine channels-, restrict the input and output of the channel to 4 and 1 bit respectively and allow 6 bits of memory.Comment: Improved presentation and clarified claim
    corecore