7,884 research outputs found

    Automorphic properties of generating functions for generalized rank moments and Durfee symbols

    Full text link
    We define two-parameter generalizations of two combinatorial constructions of Andrews: the kth symmetrized rank moment and the k-marked Durfee symbol. We prove that three specializations of the associated generating functions are so-called quasimock theta functions, while a fourth specialization gives quasimodular forms. We then define a two-parameter generalization of Andrews' smallest parts function and note that this leads to quasimock theta functions as well. The automorphic properties are deduced using q-series identities relating the relevant generating functions to known mock theta functions.Comment: 18 page

    Knots, Skein Theory and q-Series

    Get PDF
    The tail of a sequence {P_n(q)} of formal power series in Z[q^{-1}][[q]], if it exists, is the formal power series whose first nn coefficients agree up to a common sign with the first n coefficients of P_n. The colored Jones polynomial is link invariant that associates to every link in S^3 a sequence of Laurent polynomials. In the first part of this work we study the tail of the unreduced colored Jones polynomial of alternating links using the colored Kauffman skein relation. This gives a natural extension of a result by Kauffman, Murasugi, and Thistlethwaite regarding the highest and lowest coefficients of Jones polynomial of alternating links. Furthermore, we show that our approach gives a new and natural proof for the existence of the tail of the colored Jones polynomial of alternating links. In the second part of this work, we study the tail of a sequence of admissible trivalent graphs with edges colored n or 2n. This can be considered as a generalization of the study of the tail of the colored Jones polynomial. We use local skein relations to understand and compute the tail of these graphs. Furthermore, we consider certain skein elements in the Kauffman bracket skein module of the disk with marked points on the boundary and we use these elements to compute the tail quantum spin networks. We also give product structures for the tail of such trivalent graphs. As an application of our work, we show that our skein theoretic techniques naturally lead to a proof for the Andrews-Gordon identities for the two variable Ramanujan theta function as well to corresponding new identities for the false theta function

    Andrews Style Partition Identities

    Get PDF
    We propose a method to construct a variety of partition identities at once. The main application is an all-moduli generalization of some of Andrews' results in [5]. The novelty is that the method constructs solutions to functional equations which are satisfied by the generating functions. In contrast, the conventional approach is to show that a variant of well-known series satisfies the system of functional equations, thus reconciling two separate lines of computations

    Overpartitions, lattice paths and Rogers-Ramanujan identities

    Get PDF
    We extend partition-theoretic work of Andrews, Bressoud, and Burge to overpartitions, defining the notions of successive ranks, generalized Durfee squares, and generalized lattice paths, and then relating these to overpartitions defined by multiplicity conditions on the parts. This leads to many new partition and overpartition identities, and provides a unification of a number of well-known identities of the Rogers-Ramanujan type. Among these are Gordon's generalization of the Rogers-Ramanujan identities, Andrews' generalization of the G\"ollnitz-Gordon identities, and Lovejoy's ``Gordon's theorems for overpartitions.
    corecore