8 research outputs found

    Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications

    Full text link
    Communication systems to date primarily aim at reliably communicating bit sequences. Such an approach provides efficient engineering designs that are agnostic to the meanings of the messages or to the goal that the message exchange aims to achieve. Next generation systems, however, can be potentially enriched by folding message semantics and goals of communication into their design. Further, these systems can be made cognizant of the context in which communication exchange takes place, providing avenues for novel design insights. This tutorial summarizes the efforts to date, starting from its early adaptations, semantic-aware and task-oriented communications, covering the foundations, algorithms and potential implementations. The focus is on approaches that utilize information theory to provide the foundations, as well as the significant role of learning in semantics and task-aware communications.Comment: 28 pages, 14 figure

    A Generalization of Blahut-Arimoto Algorithm to Compute Rate-Distortion Regions of Multiterminal Source Coding Under Logarithmic Loss

    No full text
    International audienceIn this paper, we present iterative algorithms that numerically compute the rate-distortion regions of two problems: the two-encoder multiterminal source coding problem and the Chief Executive Officer (CEO) problem, both under logarithmic loss distortion measure.With the clear connection of these models with the distributed information bottleneck method, the proposed algorithms may find usefulness in a variety of applications, such as clustering, pattern recognition and learning. We illustrate the efficiency of our algorithms through some numerical examples

    A Generalization of Blahut-Arimoto Algorithm to Compute Rate-Distortion Regions of Multiterminal Source Coding Under Logarithmic Loss

    No full text
    International audienceIn this paper, we present iterative algorithms that numerically compute the rate-distortion regions of two problems: the two-encoder multiterminal source coding problem and the Chief Executive Officer (CEO) problem, both under logarithmic loss distortion measure.With the clear connection of these models with the distributed information bottleneck method, the proposed algorithms may find usefulness in a variety of applications, such as clustering, pattern recognition and learning. We illustrate the efficiency of our algorithms through some numerical examples

    Optimal information storage : nonsequential sources and neural channels

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.MIT Institute Archives copy: pages 101-163 bound in reverse order.Includes bibliographical references (p. 141-163).Information storage and retrieval systems are communication systems from the present to the future and fall naturally into the framework of information theory. The goal of information storage is to preserve as much signal fidelity under resource constraints as possible. The information storage theorem delineates average fidelity and average resource values that are achievable and those that are not. Moreover, observable properties of optimal information storage systems and the robustness of optimal systems to parameter mismatch may be determined. In this thesis, we study the physical properties of a neural information storage channel and also the fundamental bounds on the storage of sources that have nonsequential semantics. Experimental investigations have revealed that synapses in the mammalian brain possess unexpected properties. Adopting the optimization approach to biology, we cast the brain as an optimal information storage system and propose a theoretical framework that accounts for many of these physical properties. Based on previous experimental and theoretical work, we use volume as a limited resource and utilize the empirical relationship between volume anrid synaptic weight.(cont.) Our scientific hypotheses are based on maximizing information storage capacity per unit cost. We use properties of the capacity-cost function, e-capacity cost approximations, and measure matching to develop optimization principles. We find that capacity-achieving input distributions not only explain existing experimental measurements but also make non-trivial predictions about the physical structure of the brain. Numerous information storage applications have semantics such that the order of source elements is irrelevant, so the source sequence can be treated as a multiset. We formulate fidelity criteria that consider asymptotically large multisets and give conclusive, but trivialized, results in rate distortion theory. For fidelity criteria that consider fixed-size multisets. we give some conclusive results in high-rate quantization theory, low-rate quantization. and rate distortion theory. We also provide bounds on the rate-distortion function for other nonsequential fidelity criteria problems. System resource consumption can be significantly reduced by recognizing the correct invariance properties and semantics of the information storage task at hand.by Lav R. Varshney.S.M
    corecore