6,458 research outputs found

    A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

    Get PDF
    This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.Comment: The paper is accepted in Neural Computatio

    One-Shot Learning using Mixture of Variational Autoencoders: a Generalization Learning approach

    Get PDF
    Deep learning, even if it is very successful nowadays, traditionally needs very large amounts of labeled data to perform excellent on the classification task. In an attempt to solve this problem, the one-shot learning paradigm, which makes use of just one labeled sample per class and prior knowledge, becomes increasingly important. In this paper, we propose a new one-shot learning method, dubbed MoVAE (Mixture of Variational AutoEncoders), to perform classification. Complementary to prior studies, MoVAE represents a shift of paradigm in comparison with the usual one-shot learning methods, as it does not use any prior knowledge. Instead, it starts from zero knowledge and one labeled sample per class. Afterward, by using unlabeled data and the generalization learning concept (in a way, more as humans do), it is capable to gradually improve by itself its performance. Even more, if there are no unlabeled data available MoVAE can still perform well in one-shot learning classification. We demonstrate empirically the efficiency of our proposed approach on three datasets, i.e. the handwritten digits (MNIST), fashion products (Fashion-MNIST), and handwritten characters (Omniglot), showing that MoVAE outperforms state-of-the-art one-shot learning algorithms

    Goal-Directed Planning for Habituated Agents by Active Inference Using a Variational Recurrent Neural Network

    Get PDF
    It is crucial to ask how agents can achieve goals by generating action plans using only partial models of the world acquired through habituated sensory-motor experiences. Although many existing robotics studies use a forward model framework, there are generalization issues with high degrees of freedom. The current study shows that the predictive coding (PC) and active inference (AIF) frameworks, which employ a generative model, can develop better generalization by learning a prior distribution in a low dimensional latent state space representing probabilistic structures extracted from well habituated sensory-motor trajectories. In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound, while goal-directed planning is accomplished by inferring latent variables for maximizing the estimated lower bound. Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data by setting an intermediate value for a regularization coefficient. Furthermore, comparative simulation results show that the proposed model outperforms a conventional forward model in goal-directed planning, due to the learned prior confining the search of motor plans within the range of habituated trajectories.Comment: 30 pages, 19 figure
    • …
    corecore