508 research outputs found

    Mobile Open Systems Technologies For The Utilities Industries

    Get PDF
    This chapter considers the provision of mobile computing support for field engineers in the electricity industry. Section 11.2 describes field engineers current working practices and from these derives a set of general requirements for a mobile computing environment to support utilities workers. A key requirement which is identified is the need for field engineers to access real-time multimedia information in the field and it is on this requirement that the remainder of the chapter focuses. Sections 11.3 and 11.4 present a survey of enabling technologies to support distributed systems operating in both local and wide area wireless environments. The impact of these technologies on the provision of mobile computing support is assessed in section 11.5. Section 11.6 describes a software architecture which attempts to address the requirements highlighted in section 11.2 and in particular is designed to support real-time access to data in the field. Finally, section 11.7 considers the degree to which utilities workers requirements can be met by the surveyed technologies and considers the likely impact of remote data access on field engineers working practices

    Wiki-health: from quantified self to self-understanding

    Get PDF
    Today, healthcare providers are experiencing explosive growth in data, and medical imaging represents a significant portion of that data. Meanwhile, the pervasive use of mobile phones and the rising adoption of sensing devices, enabling people to collect data independently at any time or place is leading to a torrent of sensor data. The scale and richness of the sensor data currently being collected and analysed is rapidly growing. The key challenges that we will be facing are how to effectively manage and make use of this abundance of easily-generated and diverse health data. This thesis investigates the challenges posed by the explosive growth of available healthcare data and proposes a number of potential solutions to the problem. As a result, a big data service platform, named Wiki-Health, is presented to provide a unified solution for collecting, storing, tagging, retrieving, searching and analysing personal health sensor data. Additionally, it allows users to reuse and remix data, along with analysis results and analysis models, to make health-related knowledge discovery more available to individual users on a massive scale. To tackle the challenge of efficiently managing the high volume and diversity of big data, Wiki-Health introduces a hybrid data storage approach capable of storing structured, semi-structured and unstructured sensor data and sensor metadata separately. A multi-tier cloud storage system—CACSS has been developed and serves as a component for the Wiki-Health platform, allowing it to manage the storage of unstructured data and semi-structured data, such as medical imaging files. CACSS has enabled comprehensive features such as global data de-duplication, performance-awareness and data caching services. The design of such a hybrid approach allows Wiki-Health to potentially handle heterogeneous formats of sensor data. To evaluate the proposed approach, we have developed an ECG-based health monitoring service and a virtual sensing service on top of the Wiki-Health platform. The two services demonstrate the feasibility and potential of using the Wiki-Health framework to enable better utilisation and comprehension of the vast amounts of sensor data available from different sources, and both show significant potential for real-world applications.Open Acces

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces

    Device characteristics-based differentiated energy-efficient adaptive solution for multimedia delivery over heterogeneous wireless networks

    Get PDF
    Energy efficiency is a key issue of highest importance to mobile wireless device users, as those devices are powered by batteries with limited power capacity. It is of very high interest to provide device differentiated user centric energy efficient multimedia content delivery based on current application type, energy-oriented device features and user preferences. This thesis presents the following research contributions in the area of energy efficient multimedia delivery over heterogeneous wireless networks: 1. ASP: Energy-oriented Application-based System profiling for mobile devices: This profiling provides services to other contributions in this thesis. By monitoring the running applications and the corresponding power demand on the smart mobile device, a device energy model is obtained. The model is used in conjunction with applications’ power signature to provide device energy constraints posed by running applications. 2. AWERA 3. DEAS: A Device characteristics-based differentiated Energy-efficient Adaptive Solution for video delivery over heterogeneous wireless networks. Based on the energy constraint, DEAS performs energy efficient content delivery adaptation for the current application. Unlike the existing solutions, DEAS takes all the applications running on the system into account and better balances QoS and energy efficiency. 4. EDCAM 5. A comprehensive survey on state-of-the-art energy-efficient network protocols and energy-saving network technologies

    An architecture for an ATM network continuous media server exploiting temporal locality of access

    Get PDF
    With the continuing drop in the price of memory, Video-on-Demand (VoD) solutions that have so far focused on maximising the throughput of disk units with a minimal use of physical memory may now employ significant amounts of cache memory. The subject of this thesis is the study of a technique to best utilise a memory buffer within such a VoD solution. In particular, knowledge of the streams active on the server is used to allocate cache memory. Stream optimised caching exploits reuse of data among streams that are temporally close to each other within the same clip; the data fetched on behalf of the leading stream may be cached and reused by the following streams. Therefore, only the leading stream requires access to the physical disk and the potential level of service provision allowed by the server may be increased. The use of stream optimised caching may consequently be limited to environments where reuse of data is significant. As such, the technique examined within this thesis focuses on a classroom environment where user progress is generally linear and all users progress at approximately the same rate for such an environment, reuse of data is guaranteed. The analysis of stream optimised caching begins with a detailed theoretical discussion of the technique and suggests possible implementations. Later chapters describe both the design and construction of a prototype server that employs the caching technique, and experiments that use of the prototype to assess the effectiveness of the technique for the chosen environment using `emulated' users. The conclusions of these experiments indicate that stream optimised caching may be applicable to larger scale VoD systems than small scale teaching environments. Future development of stream optimised caching is considered

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    Energy efficiency in content delivery networks

    Get PDF
    The increasing popularity of bandwidth-intensive video Internet services has positioned Content Distribution Networks (CDNs) in the limelight as the emerging provider platforms for video delivery. The goal of CDNs is to maximise the availability of content in the network while maintaining the quality of experience expected by users. This is a challenging task due to the scattered nature of video content sources and destinations. Furthermore, the high energy consumption associated with content distribution calls for developing energy-efficient solutions able to cater for the future Internet. This thesis addresses the problem of content placement and update while considering energy consumption in CDNs. First, this work contributed a new energy-efficient caching scheme that stores the most popular content at the edge of the core network and optimises the size of cached content to minimise energy usage. It takes into account the trend of daily traffic and recommends putting inactive segments of caches in sleep-mode during off-peak hours. Our results showed that power minimisation is achieved by deploying switch-off capable caches, and the trend of active cache segments over the time of day follows the trend of traffic. Second, the study explores different content popularity distributions and determines their influence on power consumption. The distribution of content popularity dictates the resultant cache hit ratio achieved by storing a certain number of videos. Therefore, it directly influences the power consumption of the cache. The evaluation results indicated that under video services where the popularity of content is very diverse, the optimum solution is to store the few most popular videos in caches. In contrast, when video popularities are similar, the most power efficient scheme is either to cache the whole library or to avoid caching completely depending on the size of the video library. Third, this thesis contributed an evaluation of the power consumption of the network under real world TV data and considering standard and high definition TV programmes. We proposed a cache replacement algorithm based on the predictable nature of TV viewings. The time-driven proactive cache replacement algorithm replaces cache contents several times a day to minimise power consumption. The algorithm achieves major power savings on top of the power reductions introduced by caching. CDNs are expected to continue to be the backbone for Internet video applications. This work has shown that storing the right amount of popular videos in core caches reduces from 42% to 72% of network power consumption considering a range of content popularity distributions. Maintaining up-to-date cache contents reduces up to 48% and 86% of power consumption considering fixed and sleep-mode capable caches, respectively. Reducing the energy consumption of CDNs provides a valuable contribution for future green video delivery

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Segurança e privacidade em terminologia de rede

    Get PDF
    Security and Privacy are now at the forefront of modern concerns, and drive a significant part of the debate on digital society. One particular aspect that holds significant bearing in these two topics is the naming of resources in the network, because it directly impacts how networks work, but also affects how security mechanisms are implemented and what are the privacy implications of metadata disclosure. This issue is further exacerbated by interoperability mechanisms that imply this information is increasingly available regardless of the intended scope. This work focuses on the implications of naming with regards to security and privacy in namespaces used in network protocols. In particular on the imple- mentation of solutions that provide additional security through naming policies or increase privacy. To achieve this, different techniques are used to either embed security information in existing namespaces or to minimise privacy ex- posure. The former allows bootstraping secure transport protocols on top of insecure discovery protocols, while the later introduces privacy policies as part of name assignment and resolution. The main vehicle for implementation of these solutions are general purpose protocols and services, however there is a strong parallel with ongoing re- search topics that leverage name resolution systems for interoperability such as the Internet of Things (IoT) and Information Centric Networks (ICN), where these approaches are also applicable.Segurança e Privacidade são dois topicos que marcam a agenda na discus- são sobre a sociedade digital. Um aspecto particularmente subtil nesta dis- cussão é a forma como atribuímos nomes a recursos na rede, uma escolha com consequências práticas no funcionamento dos diferentes protocols de rede, na forma como se implementam diferentes mecanismos de segurança e na privacidade das várias partes envolvidas. Este problema torna-se ainda mais significativo quando se considera que, para promover a interoperabili- dade entre diferentes redes, mecanismos autónomos tornam esta informação acessível em contextos que vão para lá do que era pretendido. Esta tese foca-se nas consequências de diferentes políticas de atribuição de nomes no contexto de diferentes protocols de rede, para efeitos de segurança e privacidade. Com base no estudo deste problema, são propostas soluções que, através de diferentes políticas de atribuição de nomes, permitem introdu- zir mecanismos de segurança adicionais ou mitigar problemas de privacidade em diferentes protocolos. Isto resulta na implementação de mecanismos de segurança sobre protocolos de descoberta inseguros, assim como na intro- dução de mecanismos de atribuiçao e resolução de nomes que se focam na protecçao da privacidade. O principal veículo para a implementação destas soluções é através de ser- viços e protocolos de rede de uso geral. No entanto, a aplicabilidade destas soluções extende-se também a outros tópicos de investigação que recorrem a mecanismos de resolução de nomes para implementar soluções de intero- perabilidade, nomedamente a Internet das Coisas (IoT) e redes centradas na informação (ICN).Programa Doutoral em Informátic

    On the design of efficient caching systems

    Get PDF
    Content distribution is currently the prevalent Internet use case, accounting for the majority of global Internet traffic and growing exponentially. There is general consensus that the most effective method to deal with the large amount of content demand is through the deployment of massively distributed caching infrastructures as the means to localise content delivery traffic. Solutions based on caching have been already widely deployed through Content Delivery Networks. Ubiquitous caching is also a fundamental aspect of the emerging Information-Centric Networking paradigm which aims to rethink the current Internet architecture for long term evolution. Distributed content caching systems are expected to grow substantially in the future, in terms of both footprint and traffic carried and, as such, will become substantially more complex and costly. This thesis addresses the problem of designing scalable and cost-effective distributed caching systems that will be able to efficiently support the expected massive growth of content traffic and makes three distinct contributions. First, it produces an extensive theoretical characterisation of sharding, which is a widely used technique to allocate data items to resources of a distributed system according to a hash function. Based on the findings unveiled by this analysis, two systems are designed contributing to the abovementioned objective. The first is a framework and related algorithms for enabling efficient load-balanced content caching. This solution provides qualitative advantages over previously proposed solutions, such as ease of modelling and availability of knobs to fine-tune performance, as well as quantitative advantages, such as 2x increase in cache hit ratio and 19-33% reduction in load imbalance while maintaining comparable latency to other approaches. The second is the design and implementation of a caching node enabling 20 Gbps speeds based on inexpensive commodity hardware. We believe these contributions advance significantly the state of the art in distributed caching systems
    corecore