181 research outputs found

    Unrestricted Termination and Non-Termination Arguments for Bit-Vector Programs

    Full text link
    Proving program termination is typically done by finding a well-founded ranking function for the program states. Existing termination provers typically find ranking functions using either linear algebra or templates. As such they are often restricted to finding linear ranking functions over mathematical integers. This class of functions is insufficient for proving termination of many terminating programs, and furthermore a termination argument for a program operating on mathematical integers does not always lead to a termination argument for the same program operating on fixed-width machine integers. We propose a termination analysis able to generate nonlinear, lexicographic ranking functions and nonlinear recurrence sets that are correct for fixed-width machine arithmetic and floating-point arithmetic Our technique is based on a reduction from program \emph{termination} to second-order \emph{satisfaction}. We provide formulations for termination and non-termination in a fragment of second-order logic with restricted quantification which is decidable over finite domains. The resulted technique is a sound and complete analysis for the termination of finite-state programs with fixed-width integers and IEEE floating-point arithmetic

    Branching strategies for mixed-integer programs containing logical constraints and decomposable structure

    Get PDF
    Decision-making optimisation problems can include discrete selections, e.g. selecting a route, arranging non-overlapping items or designing a network of items. Branch-and-bound (B&B), a widely applied divide-and-conquer framework, often solves such problems by considering a continuous approximation, e.g. replacing discrete variable domains by a continuous superset. Such approximations weaken the logical relations, e.g. for discrete variables corresponding to Boolean variables. Branching in B&B reintroduces logical relations by dividing the search space. This thesis studies designing B&B branching strategies, i.e. how to divide the search space, for optimisation problems that contain both a logical and a continuous structure. We begin our study with a large-scale, industrially-relevant optimisation problem where the objective consists of machine-learnt gradient-boosted trees (GBTs) and convex penalty functions. GBT functions contain if-then queries which introduces a logical structure to this problem. We propose decomposition-based rigorous bounding strategies and an iterative heuristic that can be embedded into a B&B algorithm. We approach branching with two strategies: a pseudocost initialisation and strong branching that target the structure of GBT and convex penalty aspects of the optimisation objective, respectively. Computational tests show that our B&B approach outperforms state-of-the-art solvers in deriving rigorous bounds on optimality. Our second project investigates how satisfiability modulo theories (SMT) derived unsatisfiable cores may be utilised in a B&B context. Unsatisfiable cores are subsets of constraints that explain an infeasible result. We study two-dimensional bin packing (2BP) and develop a B&B algorithm that branches on SMT unsatisfiable cores. We use the unsatisfiable cores to derive cuts that break 2BP symmetries. Computational results show that our B&B algorithm solves 20% more instances when compared with commercial solvers on the tested instances. Finally, we study convex generalized disjunctive programming (GDP), a framework that supports logical variables and operators. Convex GDP includes disjunctions of mathematical constraints, which motivate branching by partitioning the disjunctions. We investigate separation by branching, i.e. eliminating solutions that prevent rigorous bound improvement, and propose a greedy algorithm for building the branches. We propose three scoring methods for selecting the next branching disjunction. We also analyse how to leverage infeasibility to expedite the B&B search. Computational results show that our scoring methods can reduce the number of explored B&B nodes by an order of magnitude when compared with scoring methods proposed in literature. Our infeasibility analysis further reduces the number of explored nodes.Open Acces

    Experiments with Automated Reasoning in the Class

    Get PDF
    International audienceThe European Erasmus+ project ARC-Automated Reasoning in the Class aims at improving the academic education in disciplines related to Computational Logic by using Automated Reasoning tools. We present the technical aspects of the tools as well as our education experiments, which took place mostly in virtual lectures due to the COVID pandemics. Our education goals are: to support the virtual interaction between teacher and students in the absence of the blackboard, to explain the basic Computational Logic algorithms, to study their implementation in certain programming environments, to reveal the main relationships between logic and programming, and to develop the proof skills of the students. For the introductory lectures we use some programs in C and in Mathematica in order to illustrate normal forms, resolution, and DPLL (Davis-Putnam-Logemann-Loveland) with its Chaff version, as well as an implementation of sequent calculus in the Theorema system. Furthermore we developed special tools for SAT (propositional satisfiability), some based on the original methods from the partners, including complex tools for SMT (Satisfiability Modulo Theories) that allow the illustration of various solving approaches. An SMT related approach is natural-style proving in Elementary Analysis, for which we developed and interesting set of practical heuristics. For more advanced lectures on rewrite systems we use the Coq programming and proving environment, in order on one hand to demonstrate programming in functional style and on the other hand to prove properties of programs. Other advanced approaches used in some lectures are the deduction based synthesis of algorithms and the techniques for program transformation

    When Less Is More: Consequence-Finding in a Weak Theory of Arithmetic

    Full text link
    This paper presents a theory of non-linear integer/real arithmetic and algorithms for reasoning about this theory. The theory can be conceived as an extension of linear integer/real arithmetic with a weakly-axiomatized multiplication symbol, which retains many of the desirable algorithmic properties of linear arithmetic. In particular, we show that the conjunctive fragment of the theory can be effectively manipulated (analogously to the usual operations on convex polyhedra, the conjunctive fragment of linear arithmetic). As a result, we can solve the following consequence-finding problem: given a ground formula F, find the strongest conjunctive formula that is entailed by F. As an application of consequence-finding, we give a loop invariant generation algorithm that is monotone with respect to the theory and (in a sense) complete. Experiments show that the invariants generated from the consequences are effective for proving safety properties of programs that require non-linear reasoning

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Precision analysis for hardware acceleration of numerical algorithms

    No full text
    The precision used in an algorithm affects the error and performance of individual computations, the memory usage, and the potential parallelism for a fixed hardware budget. However, when migrating an algorithm onto hardware, the potential improvements that can be obtained by tuning the precision throughout an algorithm to meet a range or error specification are often overlooked; the major reason is that it is hard to choose a number system which can guarantee any such specification can be met. Instead, the problem is mitigated by opting to use IEEE standard double precision arithmetic so as to be ‘no worse’ than a software implementation. However, the flexibility in the number representation is one of the key factors that can be exploited on reconfigurable hardware such as FPGAs, and hence ignoring this potential significantly limits the performance achievable. In order to optimise the performance of hardware reliably, we require a method that can tractably calculate tight bounds for the error or range of any variable within an algorithm, but currently only a handful of methods to calculate such bounds exist, and these either sacrifice tightness or tractability, whilst simulation-based methods cannot guarantee the given error estimate. This thesis presents a new method to calculate these bounds, taking into account both input ranges and finite precision effects, which we show to be, in general, tighter in comparison to existing methods; this in turn can be used to tune the hardware to the algorithm specifications. We demonstrate the use of this software to optimise hardware for various algorithms to accelerate the solution of a system of linear equations, which forms the basis of many problems in engineering and science, and show that significant performance gains can be obtained by using this new approach in conjunction with more traditional hardware optimisations

    Automatic Numerical Solving for Auto-active Verification of Floating-Point Programs

    Get PDF
    We present a new process for the verification of numerical programs with tight functional specifications that feature exact arithmetic including selected transcendental functions. The process, which simplifies, derives bounds, and safely eliminates floating-point operations from Verification Conditions (VCs) produced by Why3, is capable of automatically verifying such specifications and is implemented in our new open source tool named PropaFP. We evaluate PropaFP alongside the state-of-the-art in formal verification of floating-point programs where we find that the process is able to verify specifications that current tools are unable to verify. We also present novel branch-and-prune contractions based on linearisations of conjunctions that consist of nonlinear real inequalities with differentiable expressions. These linearisations and contractions are implemented in our new open source numerical prover named LPPaver. The contractions we have discovered are used to significantly improve the ‘pruning’ step of our branch-and-prune algorithm. We evaluate LPPaver alongside state-of-the-art automated solvers for problems involving nonlinear real arithmetic. LPPaver performs comparably and, in some cases, better than these solvers. Together, PropaFP and LPPaver yield the first fully automatically verified implementations of the sine and square root functions with tight functional specifications

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    corecore