1,161 research outputs found

    A General-Purpose Tagger with Convolutional Neural Networks

    Full text link
    We present a general-purpose tagger based on convolutional neural networks (CNN), used for both composing word vectors and encoding context information. The CNN tagger is robust across different tagging tasks: without task-specific tuning of hyper-parameters, it achieves state-of-the-art results in part-of-speech tagging, morphological tagging and supertagging. The CNN tagger is also robust against the out-of-vocabulary problem, it performs well on artificially unnormalized texts

    Semantic Tagging with Deep Residual Networks

    Get PDF
    We propose a novel semantic tagging task, sem-tagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system, consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).Comment: COLING 2016, camera ready versio

    Pulling Out All the Tops with Computer Vision and Deep Learning

    Full text link
    We apply computer vision with deep learning -- in the form of a convolutional neural network (CNN) -- to build a highly effective boosted top tagger. Previous work (the "DeepTop" tagger of Kasieczka et al) has shown that a CNN-based top tagger can achieve comparable performance to state-of-the-art conventional top taggers based on high-level inputs. Here, we introduce a number of improvements to the DeepTop tagger, including architecture, training, image preprocessing, sample size and color pixels. Our final CNN top tagger outperforms BDTs based on high-level inputs by a factor of 2\sim 2--3 or more in background rejection, over a wide range of tagging efficiencies and fiducial jet selections. As reference points, we achieve a QCD background rejection factor of 500 (60) at 50\% top tagging efficiency for fully-merged (non-merged) top jets with pTp_T in the 800--900 GeV (350--450 GeV) range. Our CNN can also be straightforwardly extended to the classification of other types of jets, and the lessons learned here may be useful to others designing their own deep NNs for LHC applications.Comment: 33 pages, 11 figure

    The Machine Learning Landscape of Top Taggers

    Full text link
    Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.Comment: Yet another tagger included
    corecore