7,263 research outputs found

    Online Tensor Methods for Learning Latent Variable Models

    Get PDF
    We introduce an online tensor decomposition based approach for two latent variable modeling problems namely, (1) community detection, in which we learn the latent communities that the social actors in social networks belong to, and (2) topic modeling, in which we infer hidden topics of text articles. We consider decomposition of moment tensors using stochastic gradient descent. We conduct optimization of multilinear operations in SGD and avoid directly forming the tensors, to save computational and storage costs. We present optimized algorithm in two platforms. Our GPU-based implementation exploits the parallelism of SIMD architectures to allow for maximum speed-up by a careful optimization of storage and data transfer, whereas our CPU-based implementation uses efficient sparse matrix computations and is suitable for large sparse datasets. For the community detection problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp and DBLP datasets, and for the topic modeling problem, we also demonstrate good performance on the New York Times dataset. We compare our results to the state-of-the-art algorithms such as the variational method, and report a gain of accuracy and a gain of several orders of magnitude in the execution time.Comment: JMLR 201

    Community Detection in Networks with Node Attributes

    Full text link
    Community detection algorithms are fundamental tools that allow us to uncover organizational principles in networks. When detecting communities, there are two possible sources of information one can use: the network structure, and the features and attributes of nodes. Even though communities form around nodes that have common edges and common attributes, typically, algorithms have only focused on one of these two data modalities: community detection algorithms traditionally focus only on the network structure, while clustering algorithms mostly consider only node attributes. In this paper, we develop Communities from Edge Structure and Node Attributes (CESNA), an accurate and scalable algorithm for detecting overlapping communities in networks with node attributes. CESNA statistically models the interaction between the network structure and the node attributes, which leads to more accurate community detection as well as improved robustness in the presence of noise in the network structure. CESNA has a linear runtime in the network size and is able to process networks an order of magnitude larger than comparable approaches. Last, CESNA also helps with the interpretation of detected communities by finding relevant node attributes for each community.Comment: Published in the proceedings of IEEE ICDM '1

    Detecting Cohesive and 2-mode Communities in Directed and Undirected Networks

    Full text link
    Networks are a general language for representing relational information among objects. An effective way to model, reason about, and summarize networks, is to discover sets of nodes with common connectivity patterns. Such sets are commonly referred to as network communities. Research on network community detection has predominantly focused on identifying communities of densely connected nodes in undirected networks. In this paper we develop a novel overlapping community detection method that scales to networks of millions of nodes and edges and advances research along two dimensions: the connectivity structure of communities, and the use of edge directedness for community detection. First, we extend traditional definitions of network communities by building on the observation that nodes can be densely interlinked in two different ways: In cohesive communities nodes link to each other, while in 2-mode communities nodes link in a bipartite fashion, where links predominate between the two partitions rather than inside them. Our method successfully detects both 2-mode as well as cohesive communities, that may also overlap or be hierarchically nested. Second, while most existing community detection methods treat directed edges as though they were undirected, our method accounts for edge directions and is able to identify novel and meaningful community structures in both directed and undirected networks, using data from social, biological, and ecological domains.Comment: Published in the proceedings of WSDM '1

    Modeling heterogeneity in random graphs through latent space models: a selective review

    Get PDF
    We present a selective review on probabilistic modeling of heterogeneity in random graphs. We focus on latent space models and more particularly on stochastic block models and their extensions that have undergone major developments in the last five years

    A Tensor Approach to Learning Mixed Membership Community Models

    Get PDF
    Community detection is the task of detecting hidden communities from observed interactions. Guaranteed community detection has so far been mostly limited to models with non-overlapping communities such as the stochastic block model. In this paper, we remove this restriction, and provide guaranteed community detection for a family of probabilistic network models with overlapping communities, termed as the mixed membership Dirichlet model, first introduced by Airoldi et al. This model allows for nodes to have fractional memberships in multiple communities and assumes that the community memberships are drawn from a Dirichlet distribution. Moreover, it contains the stochastic block model as a special case. We propose a unified approach to learning these models via a tensor spectral decomposition method. Our estimator is based on low-order moment tensor of the observed network, consisting of 3-star counts. Our learning method is fast and is based on simple linear algebraic operations, e.g. singular value decomposition and tensor power iterations. We provide guaranteed recovery of community memberships and model parameters and present a careful finite sample analysis of our learning method. As an important special case, our results match the best known scaling requirements for the (homogeneous) stochastic block model
    • …
    corecore