19,124 research outputs found

    Distributed mining of convoys in large scale datasets

    Get PDF
    Tremendous increase in the use of the mobile devices equipped with the GPS and other location sensors has resulted in the generation of a huge amount of movement data. In recent years, mining this data to understand the collective mobility behavior of humans, animals and other objects has become popular. Numerous mobility patterns, or their mining algorithms have been proposed, each representing a specific movement behavior. Convoy pattern is one such pattern which can be used to find groups of people moving together in public transport or to prevent traffic jams. A convoy is a set of at least m objects moving together for at least k consecutive time stamps where m and k are user-defined parameters. Existing algorithms for detecting convoy patterns do not scale to real-life dataset sizes. Therefore in this paper, we propose a generic distributed convoy pattern mining algorithm called DCM and show how such an algorithm can be implemented using the MapReduce framework. We present a cost model for DCM and a detailed theoretical analysis backed by experimental results. We show the effect of partition size on the performance of DCM. The results from our experiments on different data-sets and hardware setups, show that our distributed algorithm is scalable in terms of data size and number of nodes, and more efficient than any existing sequential as well as distributed convoy pattern mining algorithm, showing speed-ups of up to 16 times over SPARE, the state of the art distributed co-movement pattern mining framework. DCM is thus able to process large datasets which SPARE is unable to.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Colossal Trajectory Mining: A unifying approach to mine behavioral mobility patterns

    Get PDF
    Spatio-temporal mobility patterns are at the core of strategic applications such as urban planning and monitoring. Depending on the strength of spatio-temporal constraints, different mobility patterns can be defined. While existing approaches work well in the extraction of groups of objects sharing fine-grained paths, the huge volume of large-scale data asks for coarse-grained solutions. In this paper, we introduce Colossal Trajectory Mining (CTM) to efficiently extract heterogeneous mobility patterns out of a multidimensional space that, along with space and time dimensions, can consider additional trajectory features (e.g., means of transport or activity) to characterize behavioral mobility patterns. The algorithm is natively designed in a distributed fashion, and the experimental evaluation shows its scalability with respect to the involved features and the cardinality of the trajectory dataset

    k/2-hop: Fast Mining of Convoy Patterns With Effective Pruning

    Get PDF
    With the increase of devices equipped with location sensors, mining spatio-temporal data for interesting behavioral patterns has gained attention in recent years. One of such well-known patterns is the convoy pattern which can be used, e.g. to find groups of people moving together in public transport or to prevent traffic jams. A convoy consists of at least m objects moving together for at least k consecutive time instants where m and k are user-defined parameters. Convoy mining is an expensive task and existing sequential algorithms do not scale to real-life dataset sizes. Existing sequential as well as parallel algorithms require a complex set of data-dependent parameters which are hard to set and tune. Therefore, in this paper, we propose a new fast exact sequential convoy pattern mining algorithm \k/2-hop" that is free of data-dependent parameters. The proposed algorithm processes the data corresponding to a few specific key timestamps at each step and quickly prunes objects with no possibility of forming a convoy. Thus, only a very small portion of the complete dataset is considered for mining convoys. Our experimental results show that k/2-hop outperforms existing sequential as well as parallel convoy pattern mining algorithms by orders of magnitude, and scales to larger datasets which existing algorithms fail on.SCOPUS: cp.pDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    Co-movement Pattern Mining from Videos

    Full text link
    Co-movement pattern mining from GPS trajectories has been an intriguing subject in spatial-temporal data mining. In this paper, we extend this research line by migrating the data source from GPS sensors to surveillance cameras, and presenting the first investigation into co-movement pattern mining from videos. We formulate the new problem, re-define the spatial-temporal proximity constraints from cameras deployed in a road network, and theoretically prove its hardness. Due to the lack of readily applicable solutions, we adapt existing techniques and propose two competitive baselines using Apriori-based enumerator and CMC algorithm, respectively. As the principal technical contributions, we introduce a novel index called temporal-cluster suffix tree (TCS-tree), which performs two-level temporal clustering within each camera and constructs a suffix tree from the resulting clusters. Moreover, we present a sequence-ahead pruning framework based on TCS-tree, which allows for the simultaneous leverage of all pattern constraints to filter candidate paths. Finally, to reduce verification cost on the candidate paths, we propose a sliding-window based co-movement pattern enumeration strategy and a hashing-based dominance eliminator, both of which are effective in avoiding redundant operations. We conduct extensive experiments for scalability and effectiveness analysis. Our results validate the efficiency of the proposed index and mining algorithm, which runs remarkably faster than the two baseline methods. Additionally, we construct a video database with 1169 cameras and perform an end-to-end pipeline analysis to study the performance gap between GPS-driven and video-driven methods. Our results demonstrate that the derived patterns from the video-driven approach are similar to those derived from groundtruth trajectories, providing evidence of its effectiveness
    • …
    corecore