159 research outputs found

    A Guided Neighborhood Search Applied to the Split Delivery Vehicle Routing Problem

    Get PDF
    The classic vehicle routing problem considers the distribution of goods to geographically scattered customers from a central depot using a homogeneous fleet of vehicles with finite capacity. Each customer has a known demand and can be visited by exactly one vehicle. Each vehicle services the assigned customers in such a way that all customers are fully supplied and the total service does not exceed the vehicle capacity. In the split delivery vehicle routing problem, a customer can be visited by more than one vehicle, i.e., a customer demand can be split between various vehicles. Allowing split deliveries has been proven to potentially reduce the operational costs of the fleet. This study efficiently solves the split delivery vehicle routing problem using three new approaches. In the first approach, the problem is solved in two stages. During the first stage, an initial solution is found by means of a greedy approach that can produce high quality solutions comparable to those obtained with existing sophisticated approaches. The greedy approach is based on a novel concept called the route angle control measure that helps to produce spatially thin routes and avoids crossing routes. In the second stage, this constructive approach is extended to an iterative approach using adaptive memory concepts, and then a variable neighborhood descent process is added to improve the solution obtained. A new solution diversification scheme is presented in the second approach based on concentric rings centered at the depot that partitions the original problem. The resulting sub-problems are then solved using the greedy approach with route angle control measures. Different ring settings produce varied partitions and thus different solutions to the original problem are obtained and improved via a variable neighborhood descent. The third approach is a learning procedure based on a set or population of solutions. Those solutions are used to find attractive attributes and construct new solutions within a tabu search framework. As the search progresses, the existing population evolves, better solutions are included in it whereas bad solutions are removed from it. The initial set is constructed using the greedy approach with the route angle control measure whereas new solutions are created using an adaptation of the well known savings algorithm of Clarke and Wright (1964) and improved by means of an enhanced version of the variable neighborhood descent process. The proposed approaches are tested on benchmark instances and results are compared with existing implementations

    Variable Neighborhood Descent Matheuristic for the Drone Routing Problem with Beehives Sharing

    Get PDF
    In contemporary urban logistics, drones will become a preferred transportation mode for last-mile deliveries, as they have shown commercial potential and triple-bottom-line performance. Drones, in fact, address many challenges related to congestion and emissions and can streamline the last leg of the supply chain, while maintaining economic performance. Despite the common conviction that drones will reshape the future of deliveries, numerous hurdles prevent practical implementation of this futuristic vision. The sharing economy, referred to as a collaborative business model that foster sharing, exchanging and renting resources, could lead to operational improvements and enhance the cost control ability and the flexibility of companies using drones. For instance, the Amazon patent for drone beehives, which are fulfilment centers where drones can be restocked before flying out again for another delivery, could be established as a shared delivery systems where different freight carriers jointly deliver goods to customers. Only a few studies have addressed the problem of operating such facilities providing services to retail companies. In this paper, we formulate the problem as a deterministic location-routing model and derive its robust counterpart under the travel time uncertainty. To tackle the computational complexity of the model caused by the non-linear energy consumption rates in drone battery, we propose a tailored matheuristic combining variable neighborhood descent with a cut generation approach. The computational experiments show the efficiency of the solution approach especially compared to the Gurobi solver

    Profitable Vehicle Routing Problem with Multiple Trips: Modeling and Variable Neighborhood Descent Algorithm

    Get PDF
    Abstract In this paper, we tackle a new variant of the Veh icle Routing Problem (VRP) which comb ines two known variants namely the Profitable VRP and the VRP with Mult iple Trips. The resulting problem may be called the Profitable Vehicle Routing Problem with Multiple Trips. The main purpose is to cover and solve a more co mplex realistic situation of the distribution transportation. The profitability concept arises when only a subset of customers can be served due to the lack of means or for insufficiency of the offer. In this case, each customer is associated to an economical profit wh ich will be integrated to the objective function. The latter contains at hand the total collected profit minus the transportation costs. Each vehicle is allowed to perform several routes under a strict workday duration limit. This problem has a very practical interest especially for daily distribution schedules with limited vehicle fleets and short course transportation networks. We point out a new discursive approach for p rofits quantificat ion wh ich is mo re significant than those existing in the literature. We propose four equivalent mathematical formu lations for the problem which are tested and compared using CPLEX solver on small-size instances. Optimal solutions are identified. For large-size instance, two constructive heuristics are proposed and enhanced using Hill Climbing and Variable Neighborhood Descent algorithm based on a specific three-arrays-based coding structure. Finally, extensive co mputational experiments are performed including randomly generated instances and an extended and adapted benchmark fro m literature showing very satisfactory results

    The stochastic vehicle routing problem : a literature review, part II : solution methods

    Get PDF
    Building on the work of Gendreau et al. (Oper Res 44(3):469–477, 1996), and complementing the first part of this survey, we review the solution methods used for the past 20 years in the scientific literature on stochastic vehicle routing problems (SVRP). We describe the methods and indicate how they are used when dealing with stochastic vehicle routing problems. Keywords: vehicle routing (VRP), stochastic programmingm, SVRPpublishedVersio
    • …
    corecore