135 research outputs found

    Repeatable Motion Planning for Redundant Robots over Cyclic Tasks

    Get PDF
    We consider the problem of repeatable motion planning for redundant robotic systems performing cyclic tasks in the presence of obstacles. For this open problem, we present a control-based randomized planner, which produces closed collision-free paths in configuration space and guarantees continuous satisfaction of the task constraints. The proposed algorithm, which relies on bidirectional search and loop closure in the task-constrained configuration space, is shown to be probabilistically complete. A modified version of the planner is also devised for the case in which configuration-space paths are required to be smooth. Finally, we present planning results in various scenarios involving both free-flying and nonholonomic robots to show the effectiveness of the proposed method

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Selected topics in robotics for space exploration

    Get PDF
    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics

    Robust Grasp with Compliant Multi-Fingered Hand

    Get PDF
    As robots find more and more applications in unstructured environments, the need for grippers able to grasp and manipulate a large variety of objects has brought consistent attention to the use of multi-fingered hands. The hardware development and the control of these devices have become one of the most active research subjects in the field of grasping and dexterous manipulation. Despite a large number of publications on grasp planning, grasping frameworks that strongly depend on information collected by touching the object are getting attention only in recent years. The objective of this thesis focuses on the development of a controller for a robotic system composed of a 7-dof collaborative arm + a 16-dof torque-controlled multi-fingered hand to successfully and robustly grasp various objects. The robustness of the grasp is increased through active interaction between the object and the arm/hand robotic system. Algorithms that rely on the kinematic model of the arm/hand system and its compliance characteristics are proposed and tested on real grasping applications. The obtained results underline the importance of taking advantage of information from hand-object contacts, which is necessary to achieve human-like abilities in grasping tasks

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    A Framework for Collaborative Multi-task, Multi-robot Missions

    Get PDF
    Robotics is a transformative technology that will empower our civilization for a new scale of human endeavors. Massive scale is only possible through the collaboration of individual or groups of robots. Collaboration allows specialization, meaning a multirobot system may accommodate heterogeneous platforms including human partners. This work develops a unified control architecture for collaborative missions comprised of multiple, multi-robot tasks. Using kinematic equations and Jacobian matrices, the system states are transformed into alternative control spaces which are more useful for the designer or more convenient for the operator. The architecture allows multiple tasks to be combined, composing tightly coordinated missions. Using this approach, the designer is able to compensate for non-ideal behavior in the appropriate space using whatever control scheme they choose. This work presents a general design methodology, including analysis techniques for relevant control metrics like stability, responsiveness, and disturbance rejection, which were missing in prior work. Multiple tasks may be combined into a collaborative mission. The unified motion control architecture merges the control space components for each task into a concise federated system to facilitate analysis and implementation. The task coordination function defines task commands as functions of mission commands and state values to create explicit closed-loop collaboration. This work presents analysis techniques to understand the effects of cross-coupling tasks. This work analyzes system stability for the particular control architecture and identifies an explicit condition to ensure stable switching when reallocating robots. We are unaware of any other automated control architectures that address large-scale collaborative systems composed of task-oriented multi-robot coalitions where relative spatial control is critical to mission performance. This architecture and methodology have been validated in experiments and in simulations, repeating earlier work and exploring new scenarios and. It can perform large-scale, complex missions via a rigorous design methodology

    Design and Development of an Automated Mobile Manipulator for Industrial Applications

    Get PDF
    This thesis presents the modeling, control and coordination of an automated mobile manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that includes a mobile platform for locomotion and a manipulator arm for manipulation. The structural complexity of a mobile manipulator is the main challenging issue because it includes several problems like adapting a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective of the thesis is to fabricate an automated mobile manipulator and develop control algorithms that effectively coordinate the arm manipulation and mobility of mobile platform. The research work starts with deriving the motion equations of mobile manipulators. The derivation introduced here makes use of motion equations of robot manipulators and mobile platforms separately, and then integrated them as one entity. The kinematic analysis is performed in two ways namely forward & inverse kinematics. The motion analysis is performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion analysis results, Differential three WMP is chosen as the mobile platform for the developed mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-Hartenberg representation is implemented to perform forward kinematic analysis. Because of this representation, one can easily understand the kinematic equation for a robotic arm. From the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is developed. Motion planning of an intelligent mobile robot is one of the most vital issues in the field of robotics, which includes the generation of optimal collision free trajectories within its work space and finally reaches its target position. For solving this problem, two evolutionary algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) are introduced to move the mobile platform in intelligent manner. The developed algorithms are effective in avoiding obstacles, trap situations and generating optimal paths within its unknown environments. Once the robot reaches its goal (within the work space of the manipulator), the manipulator will generate its trajectories according to task assigned by the user. Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility of the developed methodologies in various unknown environments. Additionally, experiments are carried out on an automated mobile manipulator. ATmega16 Microcontrollers are used to enable the entire robot system movement in desired trajectories by means of robot interface application program. The control program is developed in robot software (Keil) to control the mobile manipulator servomotors via a serial connection through a personal computer. To support the proposed control algorithms both simulation and experimental results are presented. Moreover, validation of the developed methodologies has been made with the ER-400 mobile platform
    corecore