193 research outputs found

    Review of Computational approaches for predicting the physicochemical and biological properties of nanoparticles

    Get PDF
    In the growing field of nanotechnology there is a need to determine the physicochemical and potential toxicological properties of nanomaterials since many industrial, medical and consumer applications are based on an understanding of these properties and on a controlled exposure to the materials. This document provides a literature review on the current status of computational studies aimed at predicting the physicochemical properties and biological effects (including toxicity) of nanomaterials, with an emphasis on medical applications. Although a number of models have been published for physicochemical property prediction, very few models have been published for predicting biological effects, toxicity or the underlying mechanisms of action. This is due to two main reasons: a) nanomaterials form a colloidal phase when in contact with biological systems making the definition and calculation of properties (descriptors) suitable for the prediction of toxicity a new and challenging task, and b) nanomaterials form a very heterogeneous class of materials, not only in terms of their chemical composition, but also in terms of size, shape, agglomeration state, and surface reactivity. There is thus an urgent need to extend the traditional structure-activity paradigm to develop methods for predicting the toxicity of nanomaterials, and to make the resulting models readily available. This document concludes by proposing some lines of research to fill the gap in knowledge and predictive methodologyJRC.I.6-Systems toxicolog

    Solvation thermodynamics of organic molecules by the molecular integral equation theory : approaching chemical accuracy

    Get PDF
    The integral equation theory (IET) of molecular liquids has been an active area of academic research in theoretical and computational physical chemistry for over 40 years because it provides a consistent theoretical framework to describe the structural and thermodynamic properties of liquid-phase solutions. The theory can describe pure and mixed solvent systems (including anisotropic and nonequilibrium systems) and has already been used for theoretical studies of a vast range of problems in chemical physics / physical chemistry, molecular biology, colloids, soft matter, and electrochemistry. A consider- able advantage of IET is that it can be used to study speci fi c solute โˆ’ solvent interactions, unlike continuum solvent models, but yet it requires considerably less computational expense than explicit solvent simulations

    Soluut-solvent vastasmรตjude eksperimentaalne uurimine ja modelleerimine

    Get PDF
    Vรคitekirja elektrooniline versioon ei sisalda publikatsiooneEnamik praktilist tรคhtsust omavatest keemilistest protsessidest toimub vedelikes โ€“ mitte ainult tรถรถstuslik sรผntees ja laborikeemia, vaid ka bioloogilised protsessid nagu rakkude hingamine toimuvad molekulaarsel tasemel keerulise koostisega lahustes. Neist protsessidest arusaamine ja molekulide kรคitumise ennustamine lahustes on tรคhtis arvukate uurimisvaldkondade jaoks, meditsiinist ja farmakoloogiast naftakeemiani. Kahjuks on ainete omaduste ennustamine vedelikes arvutuskeemia jaoks รผks keerulisemaid รผlesandeid. Kรคesolevas tรถรถs hinnati olemasolevate arvutusmetoodikate sobivust vesiniksideme tekke kirjeldamiseks orgaanilistes lahustites ning molekulide jaotuse kirjeldamiseks kahe vedeliku vahel (sisuliselt vedelik-vedelik ekstraktsiooni modelleerimiseks). Peamine kasutatud arvutusmeetod oli COSMO-RS (Conductor-like Screening Model for Real Solvents), valitud oma erakordse sobivuse tรตttu kontsentreeritud ja mitmekomponendiliste lahuste omaduste ennustamiseks ja molekulaardisainiks. Tรถรถ kรคigus leiti, et vesiniksidemed neutraalsete molekulide vahel on kirjeldatavad suhteliselt hรคsti, kuid vaadeldud arvutusmetoodikad pole piisavalt tรคpsed negatiivselt laetud vesiniksidemega komplekside modelleerimiseks. Vedelik-vedelik ekstraktsiooni tulemuste ennustamine COSMO-RS meetodiga oli รผldjuhul edukas. Saadud tulemustele (nii lรตpp- kui vahepealsetele parameetritele) saadi tรคpsuse hinanngud. Peale selle arendati uus metodoloogia tundmatute รผhendite jaotuse ennustamiseks kahe mitteseguneva vedeliku vahel ilma vajaduseta รผhendeid identifitseerida. See lihtsustab parima lahusti valikut ainete isoleerimiseks vรตi puhastamiseks, vรคhendades tรถรถ- ja kemikaalide kulu ning jรครคtmete kogust.The majority of practically relevant chemical processes occur in liquids. Those are not limited to industrial synthesis and laboratory chemistry โ€“ biological processes such as cellular respiration on molecular level take place in complex solutions. Understanding and being able to predict the behaviour of molecules in solutions is essential for numerous branches of science, ranging from medicine and pharmacology to petroleum chemistry. However, predicting the behavior of chemical compounds in liquids, especially in many-component solutions, is one of the most challenging tasks for computational chemistry. In this work existing computational methodologies were tested for suitability for describing hydrogen bond formation in organic solvents and distribution of organic compounds between liquids (essentially modeling of liquid-liquid extraction). The main computational method in this work is COSMO-RS (Conductor-like Screening Model for Real Solvents), chosen for its unequalled ability to predict properties of concentrated and multicomponent solutions and usability in molecular design. It was found that properties of hydrogen bonds between uncharged molecules can be predicted relatively well, but the tested computational approaches were not accurate enough for description of hydrogen bonds involving negatively charged ions. Modeling of liquid-liquid extraction using COSMO-RS was generally successful. Accuracy of the predictions and intermediate parameters was evaluated and problematic cases identified and discussed. Also, a new methodology was developed for predicting the distribution of unknown compounds between immiscible solutions without need for compound identification. It allows simplifying the solvent selection for compound isolation or purification, reducing the workload, expenses and waste amount

    ์‹ฌ์ธตํ•™์Šต์„ ์ด์šฉํ•œ ์•ก์ฒด๊ณ„์˜ ์„ฑ์งˆ ์˜ˆ์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€,2020. 2. ์ •์—ฐ์ค€.์ตœ๊ทผ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ์ˆ ์˜ ๊ธ‰๊ฒฉํ•œ ๋ฐœ์ „๊ณผ ์ด์˜ ํ™”ํ•™ ๋ถ„์•ผ์— ๋Œ€ํ•œ ์ ์šฉ์€ ๋‹ค์–‘ํ•œ ํ™”ํ•™์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ๊ตฌ์กฐ-์„ฑ์งˆ ์ •๋Ÿ‰ ๊ด€๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์˜ˆ์ธก ๋ชจํ˜•์˜ ๊ฐœ๋ฐœ์„ ๊ฐ€์†ํ•˜๊ณ  ์žˆ๋‹ค. ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€๋Š” ๊ทธ๋Ÿฌํ•œ ๊ธฐ๊ณ„ํ•™์Šต์˜ ์ ์šฉ ์˜ˆ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ ๋‹ค์–‘ํ•œ ์šฉ๋งค ๋‚ด์˜ ํ™”ํ•™๋ฐ˜์‘์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ทผ๋ณธ์  ์„ฑ์งˆ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€๋ฅผ ์›์ž๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ๋ถ€ํ„ฐ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์‹ฌ์ธตํ•™์Šต ๊ธฐ๋ฐ˜ ์šฉ๋งคํ™” ๋ชจํ˜•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ์•ˆ๋œ ์‹ฌ์ธตํ•™์Šต ๋ชจํ˜•์˜ ๊ณ„์‚ฐ ๊ณผ์ •์€ ์šฉ๋งค์™€ ์šฉ์งˆ ๋ถ„์ž์— ๋Œ€ํ•œ ๋ถ€ํ˜ธํ™” ํ•จ์ˆ˜๊ฐ€ ๊ฐ ์›์ž์™€ ๋ถ„์ž๋“ค์˜ ๊ตฌ์กฐ์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ๋ฒกํ„ฐ ํ‘œํ˜„์„ ์ถ”์ถœํ•˜๋ฉฐ, ์ด๋ฅผ ํ† ๋Œ€๋กœ ์›์ž๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณต์žกํ•œ ํผ์…‰ํŠธ๋ก  ์‹ ๊ฒฝ๋ง ๋Œ€์‹  ๋ฒกํ„ฐ๊ฐ„์˜ ๊ฐ„๋‹จํ•œ ๋‚ด์ ์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. 952๊ฐ€์ง€์˜ ์œ ๊ธฐ์šฉ์งˆ๊ณผ 147๊ฐ€์ง€์˜ ์œ ๊ธฐ์šฉ๋งค๋ฅผ ํฌํ•จํ•˜๋Š” 6,493๊ฐ€์ง€์˜ ์‹คํ—˜์น˜๋ฅผ ํ† ๋Œ€๋กœ ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์˜ ๊ต์ฐจ ๊ฒ€์ฆ ์‹œํ—˜์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ, ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ ๊ธฐ์ค€ 0.2 kcal/mol ์ˆ˜์ค€์œผ๋กœ ๋งค์šฐ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง„๋‹ค. ์Šค์บํด๋“œ-๊ธฐ๋ฐ˜ ๊ต์ฐจ ๊ฒ€์ฆ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ 0.6 kcal/mol ์ˆ˜์ค€์œผ๋กœ, ์™ธ์‚ฝ์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ๋ถ„์ž ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก์— ๋Œ€ํ•ด์„œ๋„ ์šฐ์ˆ˜ํ•œ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ํŠน์ • ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์€ ๊ทธ ๊ตฌ์กฐ ์ƒ ํŠน์ • ์šฉ๋งค์— ํŠนํ™”๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ๋†’์€ ์–‘๋„์„ฑ์„ ๊ฐ€์ง€๋ฉฐ ํ•™์Šต์— ์ด์šฉํ•  ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๋ฅผ ๋Š˜์ด๋Š” ๋ฐ ์šฉ์ดํ•˜๋‹ค. ์›์ž๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ๋ถ„์„์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹ฌ์ธตํ•™์Šต ๋ชจํ˜• ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€์— ๋Œ€ํ•œ ๊ทธ๋ฃน-๊ธฐ์—ฌ๋„๋ฅผ ์ž˜ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ธฐ๊ณ„ํ•™์Šต์„ ํ†ตํ•ด ๋‹จ์ˆœํžˆ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์„ฑ์งˆ๋งŒ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด ๋”์šฑ ์ƒ์„ธํ•œ ๋ฌผ๋ฆฌํ™”ํ•™์  ์ดํ•ด๋ฅผ ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค.Recent advances in machine learning technologies and their chemical applications lead to the developments of diverse structure-property relationship based prediction models for various chemical properties; the free energy of solvation is one of them and plays a dominant role as a fundamental measure of solvation chemistry. Here, we introduce a novel machine learning-based solvation model, which calculates the target solvation free energy from pairwise atomistic interactions. The novelty of our proposed solvation model involves rather simple architecture: two encoding function extracts vector representations of the atomic and the molecular features from the given chemical structure, while the inner product between two atomistic features calculates their interactions, instead of black-boxed perceptron networks. The cross-validation result on 6,493 experimental measurements for 952 organic solutes and 147 organic solvents achieves an outstanding performance, which is 0.2 kcal/mol in MUE. The scaffold-based split method exhibits 0.6 kcal/mol, which shows that the proposed model guarantees reasonable accuracy even for extrapolated cases. Moreover, the proposed model shows an excellent transferability for enlarging training data due to its solvent-non-specific nature. Analysis of the atomistic interaction map shows there is a great potential that our proposed model reproduces group contributions on the solvation energy, which makes us believe that the proposed model not only provides the predicted target property, but also gives us more detailed physicochemical insights.1. Introduction 1 2. Delfos: Deep Learning Model for Prediction of Solvation Free Energies in Generic Organic Solvents 7 2.1. Methods 7 2.1.1. Embedding of Chemical Contexts 7 2.1.2. Encoder-Predictor Network 9 2.2. Results and Discussions 13 2.2.1. Computational Setup and Results 13 2.2.2. Transferability of the Model for New Compounds 17 2.2.3. Visualization of Attention Mechanism 26 3. Group Contribution Method for the Solvation Energy Estimation with Vector Representations of Atom 29 3.1. Model Description 29 3.1.1. Word Embedding 29 3.1.2. Network Architecture 33 3.2. Results and Discussions 39 3.2.1. Computational Details 39 3.2.2. Prediction Accuracy 42 3.2.3. Model Transferability 44 3.2.4. Group Contributions of Solvation Energy 49 4. Empirical Structure-Property Relationship Model for Liquid Transport Properties 55 5. Concluding Remarks 61 A. Analyzing Kinetic Trapping as a First-Order Dynamical Phase Transition in the Ensemble of Stochastic Trajectories 65 A1. Introduction 65 A2. Theory 68 A3. Lattice Gas Model 70 A4. Mathematical Model 73 A5. Dynamical Phase Transitions 75 A6. Conclusion 82 B. Reaction-Path Thermodynamics of the Michaelis-Menten Kinetics 85 B1. Introduction 85 B2. Reaction Path Thermodynamics 88 B3. Fixed Observation Time 94 B4. Conclusions 101Docto

    Multi-solvent models for solvation free energy predictions using 3D-RISM hydration thermodynamic descriptors

    Get PDF
    The potential to predict Solvation Free Energies (SFEs) in any solvent using a machine learning (ML) model based on thermodynamic output, extracted exclusively from 3D-RISM simulations in water is investigated. The models on multiple solvents take into account both the solute and solvent description and offer the possibility to predict SFEs of any solute in any solvent with root mean squared errors less than 1 kcal/mol. Validations that involve exclusion of fractions or clusters of the solutes or solvents exemplify the modelโ€™s capability to predict SFEs of novel solutes and solvents with diverse chemical profiles. In addition to being predictive, our models can identify the solute and solvent features that influence SFE predictions. Furthermore, using 3D-RISM hydration thermodynamic output to predict SFEs in any organic solvent reduces the need to run 3D-RISM simulations in all these solvents. Altogether, our multi-solvent models for SFE predictions that take advantage of the solvation effects are expected to have an impact in the property prediction space
    • โ€ฆ
    corecore