8,959 research outputs found

    DISTANCE: a framework for software measure construction.

    Get PDF
    In this paper we present a framework for software measurement that is specifically suited to satisfy the measurement needs of empirical software engineering research. The framework offers an approach to measurement that builds upon the easily imagined, detected and visualised concepts of similarity and dissimilarity between software entities. These concepts are used both to model the software attributes of interest and to define the corresponding software measures. Central to the framework is a process model that embeds constructive procedures for attribute modelling and measure construction into a goal-oriented approach to empirical software engineering studies. The underlying measurement theoretic principles of our approach ensure the construct validity of the resulting measures. The approach was tested on a popular suite of object-oriented design measures. We further show that our measure construction method compares favourably to related work.Software;

    Abstractions of stochastic hybrid systems

    Get PDF
    Many control systems have large, infinite state space that can not be easily abstracted. One method to analyse and verify these systems is reachability analysis. It is frequently used for air traffic control and power plants. Because of lack of complete information about the environment or unpredicted changes, the stochastic approach is a viable alternative. In this paper, different ways of introducing rechability under uncertainty are presented. A new concept of stochastic bisimulation is introduced and its connection with the reachability analysis is established. The work is mainly motivated by safety critical situations in air traffic control (like collision detection and avoidance) and formal tools are based on stochastic analysis

    Hydrogen radical additions to unsaturated hydrocarbons and the reverse β-scission reactions: modeling of activation energies and pre-exponential factors

    Get PDF
    The group additivity method for Arrhenius parameters is applied to. hydrogen-addition to alkenes and alkynes and the reverse beta-scission reactions, an important famliy of reactions in thermal processes based on radical chemistry. A consistent set of group additive values for 33 groups is derived to calculate the activation energy and pre-exponential factor for a broad range of hydrogen addition reactions. Thee;group additive values are determined from CBS-QB3 ab-initio-calculated rate coefficients. A mean factor of deviation of only two between CBS-QB3 and experimental rate coefficients for seven reactions in the range 300-1000 K is found. Tunneling. coefficients for these reactions were found to be significant;below 400 K and a correlation accounting for tunneling is presented. Application of the obtained group additive values to predict the kinetics for a set of 11 additions and beta-scissions yields rate coefficients within a factor of 3.5 of the CBS-QB3 results except for two beta-scissions with severe steric effects. The mean factor of deviation with respect to experimental rate coefficients of 2.0 shows that the group additive method with tunneling corrections can accurately predict the kinetics and is at least as accurate as the most commonly used density functional methods. The constructed group additive model can hence be applied to predict the kinetics of hydrogen radical additions for a broad range of unsaturated compounds

    StocHy: automated verification and synthesis of stochastic processes

    Full text link
    StocHy is a software tool for the quantitative analysis of discrete-time stochastic hybrid systems (SHS). StocHy accepts a high-level description of stochastic models and constructs an equivalent SHS model. The tool allows to (i) simulate the SHS evolution over a given time horizon; and to automatically construct formal abstractions of the SHS. Abstractions are then employed for (ii) formal verification or (iii) control (policy, strategy) synthesis. StocHy allows for modular modelling, and has separate simulation, verification and synthesis engines, which are implemented as independent libraries. This allows for libraries to be easily used and for extensions to be easily built. The tool is implemented in C++ and employs manipulations based on vector calculus, the use of sparse matrices, the symbolic construction of probabilistic kernels, and multi-threading. Experiments show StocHy's markedly improved performance when compared to existing abstraction-based approaches: in particular, StocHy beats state-of-the-art tools in terms of precision (abstraction error) and computational effort, and finally attains scalability to large-sized models (12 continuous dimensions). StocHy is available at www.gitlab.com/natchi92/StocHy

    Finitary and Infinitary Mathematics, the Possibility of Possibilities and the Definition of Probabilities

    Get PDF
    Some relations between physics and finitary and infinitary mathematics are explored in the context of a many-minds interpretation of quantum theory. The analogy between mathematical ``existence'' and physical ``existence'' is considered from the point of view of philosophical idealism. Some of the ways in which infinitary mathematics arises in modern mathematical physics are discussed. Empirical science has led to the mathematics of quantum theory. This in turn can be taken to suggest a picture of reality involving possible minds and the physical laws which determine their probabilities. In this picture, finitary and infinitary mathematics play separate roles. It is argued that mind, language, and finitary mathematics have similar prerequisites, in that each depends on the possibility of possibilities. The infinite, on the other hand, can be described but never experienced, and yet it seems that sets of possibilities and the physical laws which define their probabilities can be described most simply in terms of infinitary mathematics.Comment: 21 pages, plain TeX, related papers from http://www.poco.phy.cam.ac.uk/~mjd101

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time
    corecore