1,797 research outputs found

    A General System for Automatic Biomedical Image Segmentation Using Intensity Neighborhoods

    Get PDF
    Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    A computer-based automated algorithm for assessing acinar cell loss after experimental pancreatitis

    Get PDF
    The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operatordependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the ''ground truth''). After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1%±0.05% (p = 0.21). Within regions of injured tissue, the software reported a difference of 2.5%± 0.04% in acinar area compared with the pathologist (p = 0.47). Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas

    Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images

    Get PDF
    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) image processing libraries

    Analysis, Segmentation and Prediction of Knee Cartilage using Statistical Shape Models

    Get PDF
    Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from magnetic resonance imaging (MRI) and estimation algorithms from computer tomography (CT) or x-rays are proposed to facilitate the efficient development and accurate analysis of future treatments related to the knee. Cartilage morphology results suggest distinct patterns of wear in varus, valgus, and neutral degenerative knees, and examination of contact regions during the deep knee bend activity further emphasizes these patterns. Segmentation results were achieved that were comparable if not of higher quality than existing state-of-the-art techniques for both femoral and tibial cartilage. Likewise, using the point correspondence properties of SSMs, estimation of articulating cartilage was effective in healthy and degenerative knees. In conclusion, this work provides novel, clinically relevant morphological data to compute segmentation and estimate new data in such a way to potentially contribute to improving results and efficiency in evaluation of the femorotibial cartilage layer

    Tracking human face features in thermal images for respiration monitoring

    Get PDF
    A method has been developed to track a region related to respiration process in thermal images. The respiration region of interest (ROI) consisted of the skin area around the tip of the nose. The method was then used as part of a non-contact respiration rate monitoring that determined the skin temperature changes caused by respiration. The ROI was located by the first determining the relevant salient features of the human face physiology. These features were the warmest and coldest facial points. The tracking method was tested on thermal video images containing no head movements, small random and regular head movements. The method proved valuable for tracking the ROI in all these head movement types. It was also possible to use this tracking method to monitor respiration rate involving a number of head movement types. Currently, more investigations are underway to improve the tracking method so that it can track the ROI in cases larger head movements
    corecore