145,064 research outputs found

    A General Introduction To Graph Visualization Techniques

    Get PDF
    Generally, a graph is an abstract data type used to represent relations among a given set of data entities. Graphs are used in numerous applications within the field of information visualization, such as VLSI (circuit schematics), state-transition diagrams, and social networks. The size and complexity of graphs easily reach dimensions at which the task of exploring and navigating gets crucial. Moreover, additional requirements have to be met in order to provide proper visualizations. In this context, many techniques already have been introduced. This survey aims to provide an introduction on graph visualization techniques helping the reader to gain a first insight into the most fundamental techniques. Furthermore, a brief introduction about navigation and interaction tools is provided

    Informacijos saugos reikalavimų harmonizavimo, analizės ir įvertinimo automatizavimas

    Get PDF
    The growing use of Information Technology (IT) in daily operations of enterprises requires an ever-increasing level of protection over organization’s assets and information from unauthorised access, data leakage or any other type of information security breach. Because of that, it becomes vital to ensure the necessary level of protection. One of the best ways to achieve this goal is to implement controls defined in Information security documents. The problems faced by different organizations are related to the fact that often, organizations are required to be aligned with multiple Information security documents and their requirements. Currently, the organization’s assets and information protection are based on Information security specialist’s knowledge, skills and experience. Lack of automated tools for multiple Information security documents and their requirements harmonization, analysis and visualization lead to the situation when Information security is implemented by organizations in ineffective ways, causing controls duplication or increased cost of security implementation. An automated approach for Information security documents analysis, mapping and visualization would contribute to solving this issue. The dissertation consists of an introduction, three main chapters and general conclusions. The first chapter introduces existing Information security regulatory documents, current harmonization techniques, information security implementation cost evaluation methods and ways to analyse Information security requirements by applying graph theory optimisation algorithms (Vertex cover and Graph isomorphism). The second chapter proposes ways to evaluate information security implementation and costs through a controls-based approach. The effectiveness of this method could be improved by implementing automated initial data gathering from Business processes diagrams. In the third chapter, adaptive mapping on the basis of Security ontology is introduced for harmonization of different security documents; such an approach also allows to apply visualization techniques for harmonization results presentation. Graph optimization algorithms (vertex cover algorithm and graph isomorphism algorithm) for Minimum Security Baseline identification and verification of achieved results against controls implemented in small and medium-sized enterprises were proposed. It was concluded that the proposed methods provide sufficient data for adjustment and verification of security controls applicable by multiple Information security documents.Dissertatio

    Interactive Visual Analysis of Networked Systems: Workflows for Two Industrial Domains

    Get PDF
    We report on a first study of interactive visual analysis of networked systems. Working with ABB Corporate Research and Ericsson Research, we have created workflows which demonstrate the potential of visualization in the domains of industrial automation and telecommunications. By a workflow in this context, we mean a sequence of visualizations and the actions for generating them. Visualizations can be any images that represent properties of the data sets analyzed, and actions typically either change the selection of data visualized or change the visualization by choice of technique or change of parameters

    Visualization of Publication Impact

    Full text link
    Measuring scholarly impact has been a topic of much interest in recent years. While many use the citation count as a primary indicator of a publications impact, the quality and impact of those citations will vary. Additionally, it is often difficult to see where a paper sits among other papers in the same research area. Questions we wished to answer through this visualization were: is a publication cited less than publications in the field?; is a publication cited by high or low impact publications?; and can we visually compare the impact of publications across a result set? In this work we address the above questions through a new visualization of publication impact. Our technique has been applied to the visualization of citation information in INSPIREHEP (http://www.inspirehep.net), the largest high energy physics publication repository

    Prototyping Information Visualization in 3D City Models: a Model-based Approach

    Full text link
    When creating 3D city models, selecting relevant visualization techniques is a particularly difficult user interface design task. A first obstacle is that current geodata-oriented tools, e.g. ArcGIS, have limited 3D capabilities and limited sets of visualization techniques. Another important obstacle is the lack of unified description of information visualization techniques for 3D city models. If many techniques have been devised for different types of data or information (wind flows, air quality fields, historic or legal texts, etc.) they are generally described in articles, and not really formalized. In this paper we address the problem of visualizing information in (rich) 3D city models by presenting a model-based approach for the rapid prototyping of visualization techniques. We propose to represent visualization techniques as the composition of graph transformations. We show that these transformations can be specified with SPARQL construction operations over RDF graphs. These specifications can then be used in a prototype generator to produce 3D scenes that contain the 3D city model augmented with data represented using the desired technique.Comment: Proc. of 3DGeoInfo 2014 Conference, Dubai, November 201

    Evaluation of two interaction techniques for visualization of dynamic graphs

    Full text link
    Several techniques for visualization of dynamic graphs are based on different spatial arrangements of a temporal sequence of node-link diagrams. Many studies in the literature have investigated the importance of maintaining the user's mental map across this temporal sequence, but usually each layout is considered as a static graph drawing and the effect of user interaction is disregarded. We conducted a task-based controlled experiment to assess the effectiveness of two basic interaction techniques: the adjustment of the layout stability and the highlighting of adjacent nodes and edges. We found that generally both interaction techniques increase accuracy, sometimes at the cost of longer completion times, and that the highlighting outclasses the stability adjustment for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore