884 research outputs found

    RIGA: A Regret-Based Interactive Genetic Algorithm

    Full text link
    In this paper, we propose an interactive genetic algorithm for solving multi-objective combinatorial optimization problems under preference imprecision. More precisely, we consider problems where the decision maker's preferences over solutions can be represented by a parameterized aggregation function (e.g., a weighted sum, an OWA operator, a Choquet integral), and we assume that the parameters are initially not known by the recommendation system. In order to quickly make a good recommendation, we combine elicitation and search in the following way: 1) we use regret-based elicitation techniques to reduce the parameter space in a efficient way, 2) genetic operators are applied on parameter instances (instead of solutions) to better explore the parameter space, and 3) we generate promising solutions (population) using existing solving methods designed for the problem with known preferences. Our algorithm, called RIGA, can be applied to any multi-objective combinatorial optimization problem provided that the aggregation function is linear in its parameters and that a (near-)optimal solution can be efficiently determined for the problem with known preferences. We also study its theoretical performances: RIGA can be implemented in such way that it runs in polynomial time while asking no more than a polynomial number of queries. The method is tested on the multi-objective knapsack and traveling salesman problems. For several performance indicators (computation times, gap to optimality and number of queries), RIGA obtains better results than state-of-the-art algorithms

    Fuzzy multi objective optimization: With reference to multi objective transportation problem

    Get PDF
    In this paper we present a review of the connection between modern era techniques & fuzzy multi objective optimization (FMOO) to deal with its shortcoming and FMOO used in transportation problem. Multi objective optimization represents an interest area of research since most real life problem have a set of conflict objectives. MOO has its root in late nineteenth century welfare economics, in the works of Edge worth & Pareto. But due to some shortcoming faces, researchers attract to FMOO and they use modern era technique like artificial intelligence. Finally we develop a fuzzy linear programming method for solving the transportation problem with fuzzy goals, available supply & forecast demand and showing a frame for fuzzy multi objective transportation problem (FMOTP) solution.           &nbsp

    Healthcare staff scheduling in a fuzzy environment : a fuzzy genetic algorithm approach

    Get PDF
    In the presence of imprecise management targets, staff preferences, and patients’ expectations, the healthcare staff scheduling problem becomes complicated. The goals, preferences, and client expectations, being humanistic, are often imprecise and always evolving over time. We present a Jarosite precipitate (FGA) approach for addressing healthcare staff scheduling problems in fuzzy environments. The proposed FGA-based approach can handle multiple conflicting objectives and constraints. To improve the algorithm, fuzzy set theory is used for fitness evaluations of alternative candidate schedules by modeling the fitness of each alternative solution using fuzzy membership functions. Furthermore, the algorithm is designed to incorporate the decision maker’s choices and preferences, in addition to staff preferences. Rather than prescribing a sing solution to the decision maker, the approach provides a population of alternative solutions from which the decision maker can choose the most satisfactory solution. The FGA-based approach is potential platform upon which useful decision support tools can be developing for solving healthcare staff scheduling problems in a fuzzy environment characterized with multiple conflicting objectives and preference constraints

    A fuzzy-based particle swarm optimization algorithm for nurse scheduling

    Get PDF
    The nurse scheduling problem (NSP) has a great impact on the quality and efficiency of health care operations. Healthcare Operations Analysts have to assign daily shifts to nurses over the planning horizon, so that operations costs are minimized, health care quality is improved, and the nursing staff is satisfied. Due to conflicting objectives and a myriad of restrictions imposed by labor laws, company requirements, and other legislative laws, the NSP is a hard problem. In this paper we present a particle swarm optimization-based algorithm that relies on a heuristic mechanism that incorporates hard constraints to improve the computational efficiency of the algorithm. Further, we incorporate soft constraints into objective function evaluation to guide the algorithm. Results from illustrative examples show that the algorithm is effective and efficient, even over large scale problems

    An ACO-based Hyper-heuristic for Sequencing Many-objective Evolutionary Algorithms that Consider Different Ways to Incorporate the DM's Preferences

    Get PDF
    Many-objective optimization is an area of interest common to researchers, professionals, and practitioners because of its real-world implications. Preference incorporation into Multi-Objective Evolutionary Algorithms (MOEAs) is one of the current approaches to treat Many-Objective Optimization Problems (MaOPs). Some recent studies have focused on the advantages of embedding preference models based on interval outranking into MOEAs; several models have been proposed to achieve it. Since there are many factors influencing the choice of the best outranking model, there is no clear notion of which is the best model to incorporate the preferences of the decision maker into a particular problem. This paper proposes a hyper-heuristic algorithm—named HyperACO—that searches for the best combination of several interval outranking models embedded into MOEAs to solve MaOPs. HyperACO is able not only to select the most appropriate model but also to combine the already existing models to solve a specific MaOP correctly. The results obtained on the DTLZ and WFG test suites corroborate that HyperACO can hybridize MOEAs with a combined preference model that is suitable to the problem being solved. Performance comparisons with other state-of-the-art MOEAs and tests for statistical significance validate this conclusion

    Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection

    Get PDF
    A multiobjective binary integer programming model for R&D project portfolio selection with competing objectives is developed when problem coefficients in both objective functions and constraints are uncertain. Robust optimization is used in dealing with uncertainty while an interactive procedure is used in making tradeoffs among the multiple objectives. Robust nondominated solutions are generated by solving the linearized counterpart of the robust augmented weighted Tchebycheff programs. A decision maker’s most preferred solution is identified in the interactive robust weighted Tchebycheff procedure by progressively eliciting and incorporating the decision maker’s preference information into the solution process. An example is presented to illustrate the solution approach and performance. The developed approach can also be applied to general multiobjective mixed integer programming problems

    Preference Learning

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14101 “Preference Learning”. Preferences have recently received considerable attention in disciplines such as machine learning, knowledge discovery, information retrieval, statistics, social choice theory, multiple criteria decision making, decision under risk and uncertainty, operations research, and others. The motivation for this seminar was to showcase recent progress in these different areas with the goal of working towards a common basis of understanding, which should help to facilitate future synergies

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc
    • …
    corecore