171,088 research outputs found

    On fuzzy-qualitative descriptions and entropy

    Get PDF
    This paper models the assessments of a group of experts when evaluating different magnitudes, features or objects by using linguistic descriptions. A new general representation of linguistic descriptions is provided by unifying ordinal and fuzzy perspectives. Fuzzy qualitative labels are proposed as a generalization of the concept of qualitative labels over a well-ordered set. A lattice structure is established in the set of fuzzy-qualitative labels to enable the introduction of fuzzy-qualitative descriptions as L-fuzzy sets. A theorem is given that characterizes finite fuzzy partitions using fuzzy-qualitative labels, the cores and supports of which are qualitative labels. This theorem leads to a mathematical justification for commonly-used fuzzy partitions of real intervals via trapezoidal fuzzy sets. The information of a fuzzy-qualitative label is defined using a measure of specificity, in order to introduce the entropy of fuzzy-qualitative descriptions. (C) 2016 Elsevier Inc. All rights reserved.Peer ReviewedPostprint (author's final draft

    Fuzzy-rough set models and fuzzy-rough data reduction

    Get PDF
    Rough set theory is a powerful tool to analysis the information systems. Fuzzy rough set is introduced as a fuzzy generalization of rough sets. This paper reviewed the most important contributions to the rough set theory, fuzzy rough set theory and their applications. In many real world situations, some of the attribute values for an object may be in the set-valued form. In this paper, to handle this problem, we present a more general approach to the fuzzification of rough sets. Specially, we define a broad family of fuzzy rough sets. This paper presents a new development for the rough set theory by incorporating the classical rough set theory and the interval-valued fuzzy sets. The proposed methods are illustrated by an numerical example on the real case

    Dealing with Fuzzy Information in Software Design Methods

    Get PDF
    Software design methods incorporate a large set of heuristic rules that should result in stable software architecture of high quality. In general, clearly defined inputs are required to deliver the desired results. Unfortunately, especially in the early phases of software development, it is very difficult or even impossible to provide precisely defined information. Since methods cannot deal with imprecision, the designers need to make approximations which are generally not justifiable. In this paper, we will advocate an approach where the inputs for software design methods are modeled by using fuzzy sets. This approach renders the need for introduction of extra information for removal of inexactness obsolete

    A construction of a fuzzy topology from a strong fuzzy metric

    Full text link
    [EN] After the inception of the concept of a fuzzy metric by I. Kramosil and J. Michalek, and especially after its revision by A. George and G. Veeramani, the attention of many researches was attracted to the topology induced by a fuzzy metric. In most of the works devoted to this subject the resulting topology is an ordinary, that is a crisp one. Recently some researchers showed interest in the fuzzy-type topologies induced by fuzzy metrics. In particular, in the paper  (J.J. Mi\~{n}ana, A. \v{S}ostak, {\it Fuzzifying topology induced by a strong fuzzy metric}, Fuzzy Sets and Systems,  6938 DOI information: 10.1016/j.fss.2015.11.005.) a fuzzifying topology T:2X[0,1]{\mathcal T}:2^X \to [0,1] induced by a fuzzy metric  m:X×X×[0,)m: X\times X \times [0,\infty) was constructed. In this paper we extend  this construction to get the fuzzy topology T:[0,1]X[0,1]{\mathcal T}: [0,1]^X \to [0,1] and study some properties of this fuzzy topology.54AGrecova, S.; Sostak, A.; Uljane, I. (2016). A construction of a fuzzy topology from a strong fuzzy metric. Applied General Topology. 17(2):105-116. doi:10.4995/agt.2016.4495.SWORD105116172Chang, C. . (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24(1), 182-190. doi:10.1016/0022-247x(68)90057-7Goguen, J. . (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18(1), 145-174. doi:10.1016/0022-247x(67)90189-8Goguen, J. . (1973). The fuzzy tychonoff theorem. Journal of Mathematical Analysis and Applications, 43(3), 734-742. doi:10.1016/0022-247x(73)90288-6George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2V. Gregori, A. López-Crevillén and S. Morillas, On continuity and uniform continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'09 (2009), 85-91.Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043V. Gregori and J. Mi-ana, Some concepts related to continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'13 (2013), 85-91.Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013Gregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Höhle, U. (1980). Upper semicontinuous fuzzy sets and applications. Journal of Mathematical Analysis and Applications, 78(2), 659-673. doi:10.1016/0022-247x(80)90173-0I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344.Kubiak, T., & Sostak, A. P. (2004). A fuzzification of the category of M-valued L-topological spaces. Applied General Topology, 5(2), 137. doi:10.4995/agt.2004.1965Lowen, R. (1976). Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysis and Applications, 56(3), 621-633. doi:10.1016/0022-247x(76)90029-9Lowen, R. (1977). Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. Journal of Mathematical Analysis and Applications, 58(1), 11-21. doi:10.1016/0022-247x(77)90223-2Mardones-Pérez, I., & de Prada Vicente, M. A. (2015). Fuzzy pseudometric spaces vs fuzzifying structures. Fuzzy Sets and Systems, 267, 117-132. doi:10.1016/j.fss.2014.06.003Mardones-Pérez, I., & de Prada Vicente, M. A. (2012). A representation theorem for fuzzy pseudometrics. Fuzzy Sets and Systems, 195, 90-99. doi:10.1016/j.fss.2011.11.008Menger, K. (1951). Probabilistic Geometry. Proceedings of the National Academy of Sciences, 37(4), 226-229. doi:10.1073/pnas.37.4.226Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Miñana, J.-J., & Šostak, A. (2016). Fuzzifying topology induced by a strong fuzzy metric. Fuzzy Sets and Systems, 300, 24-39. doi:10.1016/j.fss.2015.11.005Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016A. Sapena and S. Morillas, On strong fuzzy metrics, Proc. Workshop Appl. Topology WiAT'09 (2009), 135-141.Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313A. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser II 11 (1985), 125-186.Shostak, A. P. (1989). Two decades of fuzzy topology: basic ideas, notions, and results. Russian Mathematical Surveys, 44(6), 125-186. doi:10.1070/rm1989v044n06abeh002295Šostak, A. P. (1996). Basic structures of fuzzy topology. Journal of Mathematical Sciences, 78(6), 662-701. doi:10.1007/bf02363065Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5Ying, M. (1992). A new approach for fuzzy topology (II). Fuzzy Sets and Systems, 47(2), 221-232. doi:10.1016/0165-0114(92)90181-3Ying, M. (1993). A new approach for fuzzy topology (III). Fuzzy Sets and Systems, 55(2), 193-207. doi:10.1016/0165-0114(93)90132-2Ying, M. (1993). Compactness in fuzzifying topology. Fuzzy Sets and Systems, 55(1), 79-92. doi:10.1016/0165-0114(93)90303-yYue, Y., & Shi, F.-G. (2010). On fuzzy pseudo-metric spaces. Fuzzy Sets and Systems, 161(8), 1105-1116. doi:10.1016/j.fss.2009.10.00

    Fuzzy Partial Metric Spaces

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of General Systems on 01 Dec 2018, available online: https://doi.org/10.1080/03081079.2018.1552687"[EN] In this paper we provide a concept of fuzzy partial metric space (X, P, ¿) as an extension to fuzzy setting in the sense of Kramosil and Michalek, of the concept of partial metric due to Matthews. This extension has been defined using the residuum operator ¿¿ associated to a continuous t-norm ¿ and without any extra condition on ¿. Similarly, it is defined the stronger concept of GV -fuzzy partial metric (fuzzy partial metric in the sense of George and Veeramani). After defining a concept of open ball in (X, P, ¿), a topology TP on X deduced from P is constructed, and it is showed that (X, TP) is a T0-space.Valentin Gregori acknowledges the support of the Ministry of Economy and Competitiveness of Spain under Grant MTM2015-64373-P (MINECO/Feder, UE). Juan Jose Minana acknowledges the partially support of the Ministry of Economy and Competitiveness of Spain under Grant TIN2016-81731-REDT (LODISCO II) and AEI/FEDER, UE funds, by the Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project ref. PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by project ROBINS. The latter has received research funding from the European Union framework under GA 779776. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Miravet-Fortuño, D. (2018). Fuzzy Partial Metric Spaces. International Journal of General Systems. https://doi.org/10.1080/03081079.2018.1552687SBukatin, M., Kopperman, R., & Matthews, S. (2014). Some corollaries of the correspondence between partial metrics and multivalued equalities. Fuzzy Sets and Systems, 256, 57-72. doi:10.1016/j.fss.2013.08.016Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008Demirci, M. (2012). The order-theoretic duality and relations between partial metrics and local equalities. Fuzzy Sets and Systems, 192, 45-57. doi:10.1016/j.fss.2011.04.014George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4Grečova, S., & Morillas, S. (2016). Perceptual similarity between color images using fuzzy metrics. Journal of Visual Communication and Image Representation, 34, 230-235. doi:10.1016/j.jvcir.2015.04.003Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V., & Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), 245-252. doi:10.1016/s0165-0114(00)00088-9Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001Höhle, U., & Klement, E. P. (Eds.). (1995). Non-Classical Logics and their Applications to Fuzzy Subsets. doi:10.1007/978-94-011-0215-5Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Trends in Logic. doi:10.1007/978-94-015-9540-7MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.xMenger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313Shukla, S., Gopal, D., & Roldán-López-de-Hierro, A.-F. (2016). Some fixed point theorems in 1-M-complete fuzzy metric-like spaces. International Journal of General Systems, 45(7-8), 815-829. doi:10.1080/03081079.2016.1153084Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5Yue, Y. (2015). Separated ▵+-valued equivalences as probabilistic partial metric spaces. Journal of Intelligent & Fuzzy Systems, 28(6), 2715-2724. doi:10.3233/ifs-15154

    On completeness in metric spaces and fixed point theorems

    Full text link
    [EN] Complete ultrametric spaces constitute a particular class of the so called, recently, G-complete metric spaces. In this paper we characterize a more general class called weak G-complete metric spaces, by means of nested sequences of closed sets. Then, we also state a general fixed point theorem for a self-mapping of a weak G-complete metric space. As a corollary, every asymptotically regular self-mapping of a weak G-Complete metric space has a fixed point.V. Gregori acknowledges the support of the Ministry of Economy and Competitiveness of Spain under Grant MTM2015-64373-P (MINECO/Feder, UE). J.J. Minana acknowledges financial support from the Spanish Ministry of Economy and Competitiveness under Grants TIN2016-81731-REDT (LODISCO II) and AEI/FEDER, UE funds, by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by Project Ref. PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by project ROBINS. The latter has received research funding from the EU H2020 framework under GA 779776. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2018). On completeness in metric spaces and fixed point theorems. Results in Mathematics. 73(4):1-13. https://doi.org/10.1007/s00025-018-0896-4113734Bourbaki, N.: Topologie Générale II. Herman, Paris (1974)Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–469 (1969)Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966)Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962)Fang, J.X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 46(1), 107–113 (1992)Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989)Gregori, V., Sapena, A.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 125, 245–252 (2002)Gregori, V., Miñana, J.-J., Morillas, S., Sapena, A.: Cauchyness and convergence in fuzzy metric spaces. RACSAM 111(1), 25–37 (2017)Gregori, V., Miñana, J-J., Sapena, A.: On Banach contraction principles in fuzzy metric spaces. Fixed Point Theory (to appear)Kelley, J.: General Topology. Van Nostrand, Princeton (1955)Matkowski, J.: Integrable solutions of functional equations. Dissertationes Mathematicae (Rozprawy Matematyczne) 127, 1–63 (1975)Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 8431–439 (2004)Steen, L.A., Seebach, J.A.: Counterexamples in Topology, 2nd edn. Springer, Berlin (1978)Tirado, P.: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151–158 (2012)Tirado, P.: Contraction mappings in fuzzy quasimetric spaces and [0,1][0,1] [ 0 , 1 ] -fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012)Vasuki, R., Veeramani, P.: Fixed points theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135(3), 415–417 (2003

    The Formal Construction of Fuzzy Numbers

    Get PDF
    In this article, we continue the development of the theory of fuzzy sets [23], started with [14] with the future aim to provide the formalization of fuzzy numbers [8] in terms reflecting the current state of the Mizar Mathematical Library. Note that in order to have more usable approach in [14], we revised that article as well; some of the ideas were described in [12]. As we can actually understand fuzzy sets just as their membership functions (via the equality of membership function and their set-theoretic counterpart), all the calculations are much simpler. To test our newly proposed approach, we give the notions of (normal) triangular and trapezoidal fuzzy sets as the examples of concrete fuzzy objects. Also -cuts, the core of a fuzzy set, and normalized fuzzy sets were defined. Main technical obstacle was to prove continuity of the glued maps, and in fact we did this not through its topological counterpart, but extensively reusing properties of the real line (with loss of generality of the approach, though), because we aim at formalizing fuzzy numbers in our future submissions, as well as merging with rough set approach as introduced in [13] and [11]. Our base for formalization was [9] and [10].Institute of Informatics University of Białystok Akademicka 2, 15-267 Białystok PolandGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Didier Dubois and Henri Prade. Operations on fuzzy numbers. International Journal of System Sciences, 9(6):613-626, 1978.Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.Didier Dubois and Henri Prade. Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems, 17(2-3):191-209, 1990.Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371-385, 2014. doi:10.3233/FI-2014-1129. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345459800004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.3233/FI-2014-1129Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51-54, 2013.Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21-28, 2004.Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351-356, 2001.Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Basic properties of fuzzy set operation and membership function. Formalized Mathematics, 9(2):357-362, 2001.Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965

    A Characterization of Strong Completeness in Fuzzy Metric Spaces

    Full text link
    [EN] Here, we deal with the concept of fuzzy metric space(X,M,*), due to George and Veeramani. Based on the fuzzy diameter for a subset ofX, we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work was also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements Nos. 779776 and 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2020). A Characterization of Strong Completeness in Fuzzy Metric Spaces. Mathematics. 8(6):1-11. https://doi.org/10.3390/math8060861S11186Menger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-xAtanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3Gregori, V., Romaguera, S., & Veeramani, P. (2006). A note on intuitionistic fuzzy metric spaces☆. Chaos, Solitons & Fractals, 28(4), 902-905. doi:10.1016/j.chaos.2005.08.113Gregori, V., & Sapena, A. (2018). Remarks to «on strong intuitionistic fuzzy metrics». Journal of Nonlinear Sciences and Applications, 11(02), 316-322. doi:10.22436/jnsa.011.02.12Abu-Donia, H. M., Atia, H. A., & Khater, O. M. A. (2020). Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (ϕ,ψ)-contractive mappings. Journal of Nonlinear Sciences and Applications, 13(06), 323-329. doi:10.22436/jnsa.013.06.03Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, 108-114. doi:10.1016/j.fss.2013.01.012Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gregori, V., & Miñana, J.-J. (2017). Strong convergence in fuzzy metric spaces. Filomat, 31(6), 1619-1625. doi:10.2298/fil1706619gGrabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 135(3), 415-417. doi:10.1016/s0165-0114(02)00132-xGregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Ricarte, L. A., & Romaguera, S. (2014). A domain-theoretic approach to fuzzy metric spaces. Topology and its Applications, 163, 149-159. doi:10.1016/j.topol.2013.10.014Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809Shukla, S., Gopal, D., & Sintunavarat, W. (2018). A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems, 350, 85-94. doi:10.1016/j.fss.2018.02.010Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Rakić, D., Došenović, T., Mitrović, Z. D., de la Sen, M., & Radenović, S. (2020). Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics, 8(2), 297. doi:10.3390/math802029

    A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics

    Full text link
    [EN] In 1994, Matthews introduced the notion of partial metric and established a duality relationship between partial metrics and quasi-metrics defined on a set X. In this paper, we adapt such a relationship to the fuzzy context, in the sense of George and Veeramani, by establishing a duality relationship between fuzzy quasi-metrics and fuzzy partial metrics on a set X, defined using the residuum operator of a continuous t-norm *. Concretely, we provide a method to construct a fuzzy quasi-metric from a fuzzy partial one. Subsequently, we introduce the notion of fuzzy weighted quasi-metric and obtain a way to construct a fuzzy partial metric from a fuzzy weighted quasi-metric. Such constructions are restricted to the case in which the continuous t-norm * is Archimedean and we show that such a restriction cannot be deleted. Moreover, in both cases, the topology is preserved, i.e., the topology of the fuzzy quasi-metric obtained coincides with the topology of the fuzzy partial metric from which it is constructed and vice versa. Besides, different examples to illustrate the exposed theory are provided, which, in addition, show the consistence of our constructions comparing it with the classical duality relationship.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work is also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears) and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No 779776 and No 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Miravet, D. (2020). A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics. Mathematics. 8(9):1-16. https://doi.org/10.3390/math809157511689MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.xGeorge, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Roldán-López-de-Hierro, A.-F., Karapınar, E., & Manro, S. (2014). Some new fixed point theorems in fuzzy metric spaces. Journal of Intelligent & Fuzzy Systems, 27(5), 2257-2264. doi:10.3233/ifs-141189Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Gregori, V., Miñana, J.-J., & Miravet, D. (2018). Fuzzy partial metric spaces. International Journal of General Systems, 48(3), 260-279. doi:10.1080/03081079.2018.1552687Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Romaguera, S., & Tirado, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics, 8(2), 273. doi:10.3390/math8020273Wu, X., & Chen, G. (2020). Answering an open question in fuzzy metric spaces. Fuzzy Sets and Systems, 390, 188-191. doi:10.1016/j.fss.2019.12.006Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2008). Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. Journal of Visual Communication and Image Representation, 19(1), 20-29. doi:10.1016/j.jvcir.2007.04.003Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Morillas, S., Gregori, V., Peris-Fajarnés, G., & Latorre, P. (2005). A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging, 11(5-6), 417-428. doi:10.1016/j.rti.2005.06.007Gregori, V., & Romaguera, S. (2004). Fuzzy quasi-metric spaces. Applied General Topology, 5(1), 129. doi:10.4995/agt.2004.2001Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22(5), 1039-1046. doi:10.1016/j.chaos.2004.02.051Rodrı́guez-López, J., & Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems, 147(2), 273-283. doi:10.1016/j.fss.2003.09.007Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016Miñana, J.-J., & Valero, O. (2020). On Matthews’ Relationship Between Quasi-Metrics and Partial Metrics: An Aggregation Perspective. Results in Mathematics, 75(2). doi:10.1007/s00025-020-1173-xKarapınar, E., Erhan, İ. M., & Öztürk, A. (2013). Fixed point theorems on quasi-partial metric spaces. Mathematical and Computer Modelling, 57(9-10), 2442-2448. doi:10.1016/j.mcm.2012.06.036Künzi, H.-P. A., Pajoohesh, H., & Schellekens, M. P. (2006). Partial quasi-metrics. Theoretical Computer Science, 365(3), 237-246. doi:10.1016/j.tcs.2006.07.05
    corecore