163,484 research outputs found

    LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking

    Full text link
    In this paper, we propose a novel effective light-weight framework, called LightTrack, for online human pose tracking. The proposed framework is designed to be generic for top-down pose tracking and is faster than existing online and offline methods. Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) are incorporated into one unified functioning entity, easily implemented by a replaceable single-person pose estimation module. Our framework unifies single-person pose tracking with multi-person identity association and sheds first light upon bridging keypoint tracking with object tracking. We also propose a Siamese Graph Convolution Network (SGCN) for human pose matching as a Re-ID module in our pose tracking system. In contrary to other Re-ID modules, we use a graphical representation of human joints for matching. The skeleton-based representation effectively captures human pose similarity and is computationally inexpensive. It is robust to sudden camera shift that introduces human drifting. To the best of our knowledge, this is the first paper to propose an online human pose tracking framework in a top-down fashion. The proposed framework is general enough to fit other pose estimators and candidate matching mechanisms. Our method outperforms other online methods while maintaining a much higher frame rate, and is very competitive with our offline state-of-the-art. We make the code publicly available at: https://github.com/Guanghan/lighttrack.Comment: 9 pages, 6 figures, 6 table

    Horizontal-to-Vertical Video Conversion

    Full text link
    Alongside the prevalence of mobile videos, the general public leans towards consuming vertical videos on hand-held devices. To revitalize the exposure of horizontal contents, we hereby set forth the exploration of automated horizontal-to-vertical (abbreviated as H2V) video conversion with our proposed H2V framework, accompanied by an accurately annotated H2V-142K dataset. Concretely, H2V framework integrates video shot boundary detection, subject selection and multi-object tracking to facilitate the subject-preserving conversion, wherein the key is subject selection. To achieve so, we propose a Rank-SS module that detects human objects, then selects the subject-to-preserve via exploiting location, appearance, and salient cues. Afterward, the framework automatically crops the video around the subject to produce vertical contents from horizontal sources. To build and evaluate our H2V framework, H2V-142K dataset is densely annotated with subject bounding boxes for 125 videos with 132K frames and 9,500 video covers, upon which we demonstrate superior subject selection performance comparing to traditional salient approaches, and exhibit promising horizontal-to-vertical conversion performance overall. By publicizing this dataset as well as our approach, we wish to pave the way for more valuable endeavors on the horizontal-to-vertical video conversion task

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Video Labeling for Automatic Video Surveillance in Security Domains

    Full text link
    Beyond traditional security methods, unmanned aerial vehicles (UAVs) have become an important surveillance tool used in security domains to collect the required annotated data. However, collecting annotated data from videos taken by UAVs efficiently, and using these data to build datasets that can be used for learning payoffs or adversary behaviors in game-theoretic approaches and security applications, is an under-explored research question. This paper presents VIOLA, a novel labeling application that includes (i) a workload distribution framework to efficiently gather human labels from videos in a secured manner; (ii) a software interface with features designed for labeling videos taken by UAVs in the domain of wildlife security. We also present the evolution of VIOLA and analyze how the changes made in the development process relate to the efficiency of labeling, including when seemingly obvious improvements did not lead to increased efficiency. VIOLA enables collecting massive amounts of data with detailed information from challenging security videos such as those collected aboard UAVs for wildlife security. VIOLA will lead to the development of new approaches that integrate deep learning for real-time detection and response.Comment: Presented at the Data For Good Exchange 201

    A constrained DMPs framework for robot skills learning and generalization from human demonstrations

    Get PDF
    Dynamical movement primitives (DMPs) model is a useful tool for efficiently robotic learning manipulation skills from human demonstrations and then generalizing these skills to fulfill new tasks. It is improved and applied for the cases with multiple constraints such as having obstacles or relative distance limitation for multi-agent formation. However, the improved DMPs should change additional terms according to the specified constraints of different tasks. In this paper, we will propose a novel DMPs framework facing the constrained conditions for robotic skills generalization. First, we conclude the common characteristics of previous modified DMPs with constraints and propose a general DMPs framework with various classified constraints. Inspired by barrier Lyapunov functions (BLFs), an additional acceleration term of the general model is deduced to compensate tracking errors between the real and desired trajectories with constraints. Furthermore, we prove convergence of the generated path and makes a discussion about advantages of the proposed method compared with existing literature. Finally, we instantiate the novel framework through three experiments: obstacle avoidance in the static and dynamic environment and human-like cooperative manipulation, to certify its effectiveness

    Multiple Object Tracking: A Literature Review

    Full text link
    Multiple Object Tracking (MOT) is an important computer vision problem which has gained increasing attention due to its academic and commercial potential. Although different kinds of approaches have been proposed to tackle this problem, it still remains challenging due to factors like abrupt appearance changes and severe object occlusions. In this work, we contribute the first comprehensive and most recent review on this problem. We inspect the recent advances in various aspects and propose some interesting directions for future research. To the best of our knowledge, there has not been any extensive review on this topic in the community. We endeavor to provide a thorough review on the development of this problem in recent decades. The main contributions of this review are fourfold: 1) Key aspects in a multiple object tracking system, including formulation, categorization, key principles, evaluation of an MOT are discussed. 2) Instead of enumerating individual works, we discuss existing approaches according to various aspects, in each of which methods are divided into different groups and each group is discussed in detail for the principles, advances and drawbacks. 3) We examine experiments of existing publications and summarize results on popular datasets to provide quantitative comparisons. We also point to some interesting discoveries by analyzing these results. 4) We provide a discussion about issues of MOT research, as well as some interesting directions which could possibly become potential research effort in the future

    Teacher-Student Framework Enhanced Multi-domain Dialogue Generation

    Full text link
    Dialogue systems dealing with multi-domain tasks are highly required. How to record the state remains a key problem in a task-oriented dialogue system. Normally we use human-defined features as dialogue states and apply a state tracker to extract these features. However, the performance of such a system is limited by the error propagation of a state tracker. In this paper, we propose a dialogue generation model that needs no external state trackers and still benefits from human-labeled semantic data. By using a teacher-student framework, several teacher models are firstly trained in their individual domains, learn dialogue policies from labeled states. And then the learned knowledge and experience are merged and transferred to a universal student model, which takes raw utterance as its input. Experiments show that the dialogue system trained under our framework outperforms the one uses a belief tracker.Comment: Official Version: arXiv:2005.1045

    Temporal Dynamic Appearance Modeling for Online Multi-Person Tracking

    Full text link
    Robust online multi-person tracking requires the correct associations of online detection responses with existing trajectories. We address this problem by developing a novel appearance modeling approach to provide accurate appearance affinities to guide data association. In contrast to most existing algorithms that only consider the spatial structure of human appearances, we exploit the temporal dynamic characteristics within temporal appearance sequences to discriminate different persons. The temporal dynamic makes a sufficient complement to the spatial structure of varying appearances in the feature space, which significantly improves the affinity measurement between trajectories and detections. We propose a feature selection algorithm to describe the appearance variations with mid-level semantic features, and demonstrate its usefulness in terms of temporal dynamic appearance modeling. Moreover, the appearance model is learned incrementally by alternatively evaluating newly-observed appearances and adjusting the model parameters to be suitable for online tracking. Reliable tracking of multiple persons in complex scenes is achieved by incorporating the learned model into an online tracking-by-detection framework. Our experiments on the challenging benchmark MOTChallenge 2015 demonstrate that our method outperforms the state-of-the-art multi-person tracking algorithms

    Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey

    Full text link
    Deep learning has recently achieved very promising results in a wide range of areas such as computer vision, speech recognition and natural language processing. It aims to learn hierarchical representations of data by using deep architecture models. In a smart city, a lot of data (e.g. videos captured from many distributed sensors) need to be automatically processed and analyzed. In this paper, we review the deep learning algorithms applied to video analytics of smart city in terms of different research topics: object detection, object tracking, face recognition, image classification and scene labeling.Comment: 8 pages, 18 figure

    A Collaborative Computer Aided Diagnosis (C-CAD) System with Eye-Tracking, Sparse Attentional Model, and Deep Learning

    Full text link
    There are at least two categories of errors in radiology screening that can lead to suboptimal diagnostic decisions and interventions:(i)human fallibility and (ii)complexity of visual search. Computer aided diagnostic (CAD) tools are developed to help radiologists to compensate for some of these errors. However, despite their significant improvements over conventional screening strategies, most CAD systems do not go beyond their use as second opinion tools due to producing a high number of false positives, which human interpreters need to correct. In parallel with efforts in computerized analysis of radiology scans, several researchers have examined behaviors of radiologists while screening medical images to better understand how and why they miss tumors, how they interact with the information in an image, and how they search for unknown pathology in the images. Eye-tracking tools have been instrumental in exploring answers to these fundamental questions. In this paper, we aim to develop a paradigm shift CAD system, called collaborative CAD (C-CAD), that unifies both of the above mentioned research lines: CAD and eye-tracking. We design an eye-tracking interface providing radiologists with a real radiology reading room experience. Then, we propose a novel algorithm that unifies eye-tracking data and a CAD system. Specifically, we present a new graph based clustering and sparsification algorithm to transform eye-tracking data (gaze) into a signal model to interpret gaze patterns quantitatively and qualitatively. The proposed C-CAD collaborates with radiologists via eye-tracking technology and helps them to improve diagnostic decisions. The C-CAD learns radiologists' search efficiency by processing their gaze patterns. To do this, the C-CAD uses a deep learning algorithm in a newly designed multi-task learning platform to segment and diagnose cancers simultaneously.Comment: Submitted to Medical Image Analysis Journal (MedIA
    corecore