626 research outputs found

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed

    Multiobjective optimal power flow using a semidefinite programming-based model

    Get PDF
    In spite of the significant advance achieved in the development of optimal power flow (OPF) programs, most of the solution methods reported in the literature have considerable difficulties in dealing with different-nature objective functions simultaneously. By leveraging recent progress on the semidefinite programming (SDP) relaxations of OPF, in the present article, attention is focused on modeling a new SDP-based multiobjective OPF (MO-OPF) problem. The proposed OPF model incorporates the classical ϵ-constraint approach through a parameterization strategy to handle the multiple objective functions and produce Pareto front. This article emphasizes the extension of the SDP-based model for MO-OPF problems to generate globally nondominated Pareto optimal solutions with uniform distribution. Numerical results on IEEE 30-, 57-, 118-bus, and Indian utility 62-bus test systems with all security and operating constraints show that the proposed convex model can produce the nondominated solutions with no duality gap in polynomial time, generate efficient Pareto set, and outperform the well-known heuristic methods generally used for the solution of MO-OPF. For instance, in comparison with the obtained results of NSGA-II for the 57-bus test system, the best compromise solution obtained by SDP has 1.55% and 7.42% less fuel cost and transmission losses, respectively.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots With Certified Safety

    Get PDF
    Collision avoidance plays a major part in the control of the wheeled mobile robot (WMR). Most existing collision-avoidance methods mainly focus on a single WMR and environmental obstacles. There are few products that cast light on the collision-avoidance between multiple WMRs (MWMRs). In this article, the problem of simultaneous collision-avoidance and target tracking is investigated for MWMRs working in the shared environment from the perspective of optimization. The collision-avoidance strategy is formulated as an inequality constraint, which has proven to be collision free between the MWMRs. The designed MWMRs control scheme integrates path following, collision-avoidance, and WMR velocity compliance, in which the path following task is chosen as the secondary task, and collision-avoidance is the primary task so that safety can be guaranteed in advance. A Lagrangian-based dynamic controller is constructed for the dominating behavior of the MWMRs. Combining theoretical analyses and experiments, the feasibility of the designed control scheme for the MWMRs is substantiated. Experimental results show that if obstacles do not threaten the safety of the WMR, the top priority in the control task is the target track task. All robots move along the desired trajectory. Once the collision criterion is satisfied, the collision-avoidance mechanism is activated and prominent in the controller. Under the proposed scheme, all robots achieve the target tracking on the premise of being collision free

    ASGR: An Artificial Spider-Web-Based Geographic Routing in Heterogeneous Vehicular Networks

    Get PDF
    Recently, vehicular ad hoc networks (VANETs) have been attracting significant attention for their potential for guaranteeing road safety and improving traffic comfort. Due to high mobility and frequent link disconnections, it becomes quite challenging to establish a reliable route for delivering packets in VANETs. To deal with these challenges, an artificial spider geographic routing in urban VAENTs (ASGR) is proposed in this paper. First, from the point of bionic view, we construct the spider web based on the network topology to initially select the feasible paths to the destination using artificial spiders. Next, the connection-quality model and transmission-latency model are established to generate the routing selection metric to choose the best route from all the feasible paths. At last, a selective forwarding scheme is presented to effectively forward the packets in the selected route, by taking into account the nodal movement and signal propagation characteristics. Finally, we implement our protocol on NS2 with different complexity maps and simulation parameters. Numerical results demonstrate that, compared with the existing schemes, when the packets generate speed, the number of vehicles and number of connections are varying, our proposed ASGR still performs best in terms of packet delivery ratio and average transmission delay with an up to 15% and 94% improvement, respectively

    On multi-view learning with additive models

    Get PDF
    In many scientific settings data can be naturally partitioned into variable groupings called views. Common examples include environmental (1st view) and genetic information (2nd view) in ecological applications, chemical (1st view) and biological (2nd view) data in drug discovery. Multi-view data also occur in text analysis and proteomics applications where one view consists of a graph with observations as the vertices and a weighted measure of pairwise similarity between observations as the edges. Further, in several of these applications the observations can be partitioned into two sets, one where the response is observed (labeled) and the other where the response is not (unlabeled). The problem for simultaneously addressing viewed data and incorporating unlabeled observations in training is referred to as multi-view transductive learning. In this work we introduce and study a comprehensive generalized fixed point additive modeling framework for multi-view transductive learning, where any view is represented by a linear smoother. The problem of view selection is discussed using a generalized Akaike Information Criterion, which provides an approach for testing the contribution of each view. An efficient implementation is provided for fitting these models with both backfitting and local-scoring type algorithms adjusted to semi-supervised graph-based learning. The proposed technique is assessed on both synthetic and real data sets and is shown to be competitive to state-of-the-art co-training and graph-based techniques.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS202 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Control design for UAV quadrotors via embedded model control

    Get PDF
    In this paper, a control system for unmanned aerial vehicles (UAVs) is designed, tested in simulation by means of a high-fidelity simulator, and then applied to a real quadrotor UAV. A novel approach is proposed for the control design, based on the combination of two methodologies: feedback linearization (FL) and embedded model control (EMC). FL allows us to properly transform the UAV dynamics into a form suitable for EMC; EMC is then used to control the transformed system. A key feature of EMC is that it encompasses a so-called extended state observer (ESO), which not only recovers the system state but also gives a real-time estimate of all the disturbances/uncertainties affecting the system. This estimate is used by the FL-EMC control law to reject the aforementioned disturbances/uncertainties, including those collected via the FL, allowing a robustness and performance enhancement. This approach allows us to combine FL and EMC strengths. Most notably, the entire process is made systematic and application oriented. To set-up a reliable UAV attitude observer, an effective attitude sensors fusion is proposed and also benchmarked with an enhanced complementary filter. Finally, to enhance the closed-loop performance, a complete tuning procedure, encompassing frequency requirements, is outlined, based on suitably defined stability and performance metrics

    Neural Network Model-Based Control for Manipulator: An Autoencoder Perspective

    Get PDF
    Recently, neural network model-based control has received wide interests in kinematics control of manipulators. To enhance learning ability of neural network models, the autoencoder method is used as a powerful tool to achieve deep learning and has gained success in recent years. However, the performance of existing autoencoder approaches for manipulator control may be still largely dependent on the quality of data, and for extreme cases with noisy data it may even fail. How to incorporate the model knowledge into the autoencoder controller design with an aim to increase the robustness and reliability remains a challenging problem. In this work, a sparse autoencoder controller for kinematic control of manipulators with weights obtained directly from the robot model rather than training data is proposed for the first time. By encoding and decoding the control target though a new dynamic recurrent neural network architecture, the control input can be solved through a new sparse optimization formulation. In this work, input saturation, which holds for almost all practical systems but usually is ignored for analysis simplicity, is also considered in the controller construction. Theoretical analysis and extensive simulations demonstrate that the proposed sparse autoencoder controller with input saturation can make the end-effector of the manipulator system track the desired path efficiently. Further performance comparison and evaluation against the additive noise and parameter uncertainty substantiate robustness of the proposed sparse autoencoder manipulator controller
    • …
    corecore