200,384 research outputs found

    A General Framework for Fair Regression

    Full text link
    Fairness, through its many forms and definitions, has become an important issue facing the machine learning community. In this work, we consider how to incorporate group fairness constraints in kernel regression methods, applicable to Gaussian processes, support vector machines, neural network regression and decision tree regression. Further, we focus on examining the effect of incorporating these constraints in decision tree regression, with direct applications to random forests and boosted trees amongst other widespread popular inference techniques. We show that the order of complexity of memory and computation is preserved for such models and tightly bound the expected perturbations to the model in terms of the number of leaves of the trees. Importantly, the approach works on trained models and hence can be easily applied to models in current use and group labels are only required on training data.Comment: 8 pages, 4 figures, 2 pages reference

    Achieving fairness with a simple ridge penalty

    Get PDF
    In this paper, we present a general framework for estimating regression models subject to a user-defined level of fairness. We enforce fairness as a model selection step in which we choose the value of a ridge penalty to control the effect of sensitive attributes. We then estimate the parameters of the model conditional on the chosen penalty value. Our proposal is mathematically simple, with a solution that is partly in closed form and produces estimates of the regression coefficients that are intuitive to interpret as a function of the level of fairness. Furthermore, it is easily extended to generalised linear models, kernelised regression models and other penalties, and it can accommodate multiple definitions of fairness. We compare our approach with the regression model from Komiyama et al. (in: Proceedings of machine learning research. 35th international conference on machine learning (ICML), vol 80, pp 2737–2746, 2018), which implements a provably optimal linear regression model and with the fair models from Zafar et al. (J Mach Learn Res 20:1–42, 2019). We evaluate these approaches empirically on six different data sets, and we find that our proposal provides better goodness of fit and better predictive accuracy for the same level of fairness. In addition, we highlight a source of bias in the original experimental evaluation in Komiyama et al. (in: Proceedings of machine learning research. 35th international conference on machine learning (ICML), vol 80, pp 2737–2746, 2018)

    Multi-stakeholder involvement and urban green space performance

    Get PDF
    This study aimed to identify the main factors influencing urban green space performance. Therefore, a conceptual framework on the relations of multi-stakeholder involvement (MSI) and the performance was conducted by a mixed-method approach. The study covered all urban green space projects (UGSPs) published in international journals as its population which were obtained from three main databases: ISI Web of Knowledge, Scopus and Picarta. Using a few combinations of keywords, 29 relevant journals were identified, which included 42 UGSPs as the main units of analysis in this study. A content analysis was used to determine the contribution of MSI to the performance of urban green space. The main internal (state, private, society, planning/design, implementation, maintenance, input for management, and financial support) and external (regulation, good leadership and financial support) MSI indicators were further identified. The findings showed that the main indicators that significantly influence urban green space performance are 'state, society, implementation and regulation'. The study concluded that the state plays a critical role in the UGSPs' performance although it is not the only actor. The influential role of the state and society should also be considered since most of green space projects are non-profit oriented. 'Society' involvement also contributes to the performance and 'regulation' is also needed as a legal basis for green space development and management. To validate the conceptual framework and mixed-method approach developed here, it is recommended that more studies should be conducted to compare the relationship of the MSI and the UGSPs' performance in different categories

    iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making

    Get PDF
    People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: giving adequate success rates to specifically protected groups. In contrast, the alternative paradigm of individual fairness has received relatively little attention, and this paper advances this less explored direction. The paper introduces a method for probabilistically mapping user records into a low-rank representation that reconciles individual fairness and the utility of classifiers and rankings in downstream applications. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on a variety of real-world datasets. Our experiments show substantial improvements over the best prior work for this setting.Comment: Accepted at ICDE 2019. Please cite the ICDE 2019 proceedings versio

    {iFair}: {L}earning Individually Fair Data Representations for Algorithmic Decision Making

    Get PDF
    People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: ensuring that each ethnic or social group receives its fair share in the outcome of classifiers and rankings. In contrast, the alternative paradigm of individual fairness has received relatively little attention. This paper introduces a method for probabilistically clustering user records into a low-rank representation that captures individual fairness yet also achieves high accuracy in classification and regression models. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. Since the case for fairness is ubiquitous across many tasks, we aim to learn general representations that can be applied to arbitrary downstream use-cases. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on two real-world datasets. Our experiments show substantial improvements over the best prior work for this setting

    Human Perceptions of Fairness in Algorithmic Decision Making: A Case Study of Criminal Risk Prediction

    Full text link
    As algorithms are increasingly used to make important decisions that affect human lives, ranging from social benefit assignment to predicting risk of criminal recidivism, concerns have been raised about the fairness of algorithmic decision making. Most prior works on algorithmic fairness normatively prescribe how fair decisions ought to be made. In contrast, here, we descriptively survey users for how they perceive and reason about fairness in algorithmic decision making. A key contribution of this work is the framework we propose to understand why people perceive certain features as fair or unfair to be used in algorithms. Our framework identifies eight properties of features, such as relevance, volitionality and reliability, as latent considerations that inform people's moral judgments about the fairness of feature use in decision-making algorithms. We validate our framework through a series of scenario-based surveys with 576 people. We find that, based on a person's assessment of the eight latent properties of a feature in our exemplar scenario, we can accurately (> 85%) predict if the person will judge the use of the feature as fair. Our findings have important implications. At a high-level, we show that people's unfairness concerns are multi-dimensional and argue that future studies need to address unfairness concerns beyond discrimination. At a low-level, we find considerable disagreements in people's fairness judgments. We identify root causes of the disagreements, and note possible pathways to resolve them.Comment: To appear in the Proceedings of the Web Conference (WWW 2018). Code available at https://fate-computing.mpi-sws.org/procedural_fairness
    • …
    corecore