2,762 research outputs found

    Alert-BDI: BDI Model with Adaptive Alertness through Situational Awareness

    Full text link
    In this paper, we address the problems faced by a group of agents that possess situational awareness, but lack a security mechanism, by the introduction of a adaptive risk management system. The Belief-Desire-Intention (BDI) architecture lacks a framework that would facilitate an adaptive risk management system that uses the situational awareness of the agents. We extend the BDI architecture with the concept of adaptive alertness. Agents can modify their level of alertness by monitoring the risks faced by them and by their peers. Alert-BDI enables the agents to detect and assess the risks faced by them in an efficient manner, thereby increasing operational efficiency and resistance against attacks.Comment: 14 pages, 3 figures. Submitted to ICACCI 2013, Mysore, Indi

    The trust management framework for peer-to-peer networks

    Get PDF
    Popularity of peer-to-peer (P2P) networks exposed a number of security vulnerabilities. Among those is a problem of finding reliable communication partners. In this thesis, we present an integrated trust framework for peer-to-peer networks that quantifies the trustworthiness of a peer via reputation-based trust mechanism and anomaly detection techniques. As opposed to other known techniques in P2P networks, our trust management schema is fully decentralized and does not rely on the co-operation of peers. Furthermore, the reputation computation is based on traffic coming from other peers. We also describe an anomaly detection procedure that analyses peer activity on the network and flags potentially malicious behavior by detecting deviation from peer profile. We present integration of our anomaly detection to trust management scheme and study the performance of reputation-based approach using implementation and performance of trust framework through simulation

    SecMon: End-to-End Quality and Security Monitoring System

    Get PDF
    The Voice over Internet Protocol (VoIP) is becoming a more available and popular way of communicating for Internet users. This also applies to Peer-to-Peer (P2P) systems and merging these two have already proven to be successful (e.g. Skype). Even the existing standards of VoIP provide an assurance of security and Quality of Service (QoS), however, these features are usually optional and supported by limited number of implementations. As a result, the lack of mandatory and widely applicable QoS and security guaranties makes the contemporary VoIP systems vulnerable to attacks and network disturbances. In this paper we are facing these issues and propose the SecMon system, which simultaneously provides a lightweight security mechanism and improves quality parameters of the call. SecMon is intended specially for VoIP service over P2P networks and its main advantage is that it provides authentication, data integrity services, adaptive QoS and (D)DoS attack detection. Moreover, the SecMon approach represents a low-bandwidth consumption solution that is transparent to the users and possesses a self-organizing capability. The above-mentioned features are accomplished mainly by utilizing two information hiding techniques: digital audio watermarking and network steganography. These techniques are used to create covert channels that serve as transport channels for lightweight QoS measurement's results. Furthermore, these metrics are aggregated in a reputation system that enables best route path selection in the P2P network. The reputation system helps also to mitigate (D)DoS attacks, maximize performance and increase transmission efficiency in the network.Comment: Paper was presented at 7th international conference IBIZA 2008: On Computer Science - Research And Applications, Poland, Kazimierz Dolny 31.01-2.02 2008; 14 pages, 5 figure

    Trustworthy-based efficient data broadcast model for P2P interaction in resource-constrained wireless environments

    Get PDF
    AbstractIn a decentralised system like P2P where each individual peers are considerably autonomous, the notion of mutual trust between peers is critical. In addition, when the environment is subject to inherent resource constraints, any efficiency efforts are essentially needed. In light of these two issues, we propose a novel trustworthy-based efficient broadcast scheme in a resource-constrained P2P environment. The trustworthiness is associated with the peerʼs reputation. A peer holds a personalised view of reputation towards other peers in four categories namely SpEed, Correctness, qUality, and Risk-freE (SeCuRE). The value of each category constitutes a fraction of the reliability of individual peer. Another factor that contributes to the reliability of a peer is the peerʼs credibility concerning trustworthiness in providing recommendation about other peers. Our trust management scheme is applied in conjunction with our trust model in order to detect malicious and collaborative-based malicious peers. Knowledge of trustworthiness among peers is used in our proposed broadcast model named trustworthy-based estafet multi-point relays (TEMPR). This model is designed to minimise the communication overhead between peers while considering the trustworthiness of the peers such that only trustworthy peer may relay messages to other peers. With our approach, each peer is able to disseminate messages in the most efficient and reliable manner

    Analysis of a Reputation System for Mobile Ad-Hoc Networks with Liars

    Get PDF
    The application of decentralized reputation systems is a promising approach to ensure cooperation and fairness, as well as to address random failures and malicious attacks in Mobile Ad-Hoc Networks. However, they are potentially vulnerable to liars. With our work, we provide a first step to analyzing robustness of a reputation system based on a deviation test. Using a mean-field approach to our stochastic process model, we show that liars have no impact unless their number exceeds a certain threshold (phase transition). We give precise formulae for the critical values and thus provide guidelines for an optimal choice of parameters.Comment: 17 pages, 6 figure

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems
    corecore