14,812 research outputs found

    Capacity Region of Finite State Multiple-Access Channel with Delayed State Information at the Transmitters

    Full text link
    A single-letter characterization is provided for the capacity region of finite-state multiple access channels. The channel state is a Markov process, the transmitters have access to delayed state information, and channel state information is available at the receiver. The delays of the channel state information are assumed to be asymmetric at the transmitters. We apply the result to obtain the capacity region for a finite-state Gaussian MAC, and for a finite-state multiple-access fading channel. We derive power control strategies that maximize the capacity region for these channels

    The Capacity of the Gaussian Cooperative Two-user Multiple Access Channel to within a Constant Gap

    Full text link
    The capacity region of the cooperative two-user Multiple Access Channel (MAC) in Gaussian noise is determined to within a constant gap for both the Full-Duplex (FD) and Half-Duplex (HD) case. The main contributions are: (a) for both FD and HD: unilateral cooperation suffices to achieve capacity to within a constant gap where only the user with the strongest link to the destination needs to engage in cooperation, (b) for both FD and HD: backward joint decoding is not necessary to achieve capacity to within a constant gap, and (c) for HD: time sharing between the case where the two users do not cooperate and the case where the user with the strongest link to the destination acts as pure relay for the other user suffices to achieve capacity to within a constant gap. These findings show that simple achievable strategies are approximately optimal for all channel parameters with interesting implications for practical cooperative schemes.Comment: Submitted to the 2013 IEEE International Conference on Communications (ICC 2013

    Capacity Theorems for Quantum Multiple Access Channels

    Full text link
    We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible for one sender to send classical information while the other sends quantum information. The second region gives the rates at which each sender can send quantum information. We give an example of a channel for which each region has a single-letter description, concluding with a characterization of the rates at which each user can simultaneously send classical and quantum information.Comment: 5 pages. Conference version of quant-ph/0501045, to appear in the proceedings of the IEEE International Symposium on Information Theory, Adelaide, Australia, 200

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201
    corecore