4,465 research outputs found

    Secret Sharing and Shared Information

    Full text link
    Secret sharing is a cryptographic discipline in which the goal is to distribute information about a secret over a set of participants in such a way that only specific authorized combinations of participants together can reconstruct the secret. Thus, secret sharing schemes are systems of variables in which it is very clearly specified which subsets have information about the secret. As such, they provide perfect model systems for information decompositions. However, following this intuition too far leads to an information decomposition with negative partial information terms, which are difficult to interpret. One possible explanation is that the partial information lattice proposed by Williams and Beer is incomplete and has to be extended to incorporate terms corresponding to higher order redundancy. These results put bounds on information decompositions that follow the partial information framework, and they hint at where the partial information lattice needs to be improved.Comment: 9 pages, 1 figure. The material was presented at a Workshop on information decompositions at FIAS, Frankfurt, in 12/2016. The revision includes changes in the definition of combinations of secret sharing schemes. Section 3 and Appendix now discusses in how far existing measures satisfy the proposed properties. The concluding section is considerably revise

    Layered Quantum Key Distribution

    Get PDF
    We introduce a family of QKD protocols for distributing shared random keys within a network of nn users. The advantage of these protocols is that any possible key structure needed within the network, including broadcast keys shared among subsets of users, can be implemented by using a particular multi-partite high-dimensional quantum state. This approach is more efficient in the number of quantum channel uses than conventional quantum key distribution using bipartite links. Additionally, multi-partite high-dimensional quantum states are becoming readily available in quantum photonic labs, making the proposed protocols implementable using current technology.Comment: 11 pages, 5 figures. In version 2 we extended section 4 about the dimension-rate trade-off and corrected minor error

    Framework for classifying logical operators in stabilizer codes

    Full text link
    Entanglement, as studied in quantum information science, and non-local quantum correlations, as studied in condensed matter physics, are fundamentally akin to each other. However, their relationship is often hard to quantify due to the lack of a general approach to study both on the same footing. In particular, while entanglement and non-local correlations are properties of states, both arise from symmetries of global operators that commute with the system Hamiltonian. Here, we introduce a framework for completely classifying the local and non-local properties of all such global operators, given the Hamiltonian and a bi-partitioning of the system. This framework is limited to descriptions based on stabilizer quantum codes, but may be generalized. We illustrate the use of this framework to study entanglement and non-local correlations by analyzing global symmetries in topological order, distribution of entanglement and entanglement entropy.Comment: 20 pages, 9 figure

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Partial Secret Sharing Schemes

    Get PDF
    The information ratio of an access structure is an important parameter for quantifying the efficiency of the best secret sharing scheme (SSS) realizing it. The most common security notion is perfect security. The following relaxations, in increasing level of security, have been presented in the literature: quasi-perfect, almost-perfect and statistical. Understanding the power of relaxing the correctness and privacy requirements in the efficiency of SSSs is a long-standing open problem. In this article, we introduce and study an extremely relaxed security notion, called partial security, for which it is only required that any qualified set gains strictly more information about the secret than any unqualified one. We refer to this gap as the nominal capacity. We quantify the efficiency of such schemes using a parameter called partial information ratio. It is defined to be the same as the (standard) information ratio, except that we divide the largest share entropy by nominal capacity instead of the secret entropy. Despite this modification, partial security turns out weaker than the weakest mentioned non-perfect security notion, i.e., quasi-perfect security. We present three main results in this paper. First, we prove that partial and perfect information ratios coincide for the class of linear SSSs. Consequently, for this class, information ratio is invariant with respect to all security notions. Second, by viewing a partial SSS as a wiretap channel, we prove that for the general (i.e., non-linear) class of SSSs, partial and statistical information ratios are equal. Consequently, for this class, information ratio is invariant with respect to all non-perfect security notions. Third, we show that partial and almost-perfect information ratios do not coincide for the class of mixed-linear schemes (i.e., schemes constructed by combining linear schemes with different underlying finite fields). Our first result strengthens the previous decomposition theorems for constructing perfect linear schemes. Our second result leads to a very strong decomposition theorem for constructing general (i.e., non-linear) statistical schemes. Our third result provides a rare example of the effect of imperfection on the efficiency of SSSs for a certain class of schemes

    Quantum Data Hiding

    Full text link
    We expand on our work on Quantum Data Hiding -- hiding classical data among parties who are restricted to performing only local quantum operations and classical communication (LOCC). We review our scheme that hides one bit between two parties using Bell states, and we derive upper and lower bounds on the secrecy of the hiding scheme. We provide an explicit bound showing that multiple bits can be hidden bitwise with our scheme. We give a preparation of the hiding states as an efficient quantum computation that uses at most one ebit of entanglement. A candidate data hiding scheme that does not use entanglement is presented. We show how our scheme for quantum data hiding can be used in a conditionally secure quantum bit commitment scheme.Comment: 19 pages, IEEE style, 8 figures, submitted to IEEE Transactions on Information Theor
    corecore