203,531 research outputs found

    A General Approach for Constraint Solving by Local Search

    Get PDF

    A Constraint-directed Local Search Approach to Nurse Rostering Problems

    Full text link
    In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results demonstrate the possibility of future work in the hybrid approach

    Constraint Programming and Local Search Heuristic: A Matheuristic Approach for Routing and Scheduling Feeder Vessels in Multi-Terminal Ports

    Get PDF
    International audienceIn the liner shipping business, shipping ports represent the main nodes in the maritime transportation network. These ports have a collection of terminals where container vessels can load and discharge containers. However, the logistics and planning of operations differ depending on the vessel size. Large container vessels visit a single terminal, whereas smaller container vessels, or feeder vessels, visit several terminals to transport all containers within the multiple terminals of the port. In this paper, we study the Port Scheduling Problem, the problem of scheduling the operations of feeder vessels in multi-terminal ports. The resulting problem can be identified as a version of the General Shop Scheduling Problem. We consider a Constraint Programming formulation of the problem, and we propose a math-heuristic solution approach for solving large instances. The proposed math-heuristic is a hybrid solution method that combines Constraint Programming with a local search heuristic. The solution approach benefits from the fast search capabilities of local search heuristics to explore the solution space using an Adaptive Large Neighbourhood Search heuristic. During the search, we further use the Constraint Programming model as an intensification technique, every time a new best-known solution is found. We conduct detailed computational experiments on the PortLib instances, showing that the incorporation of Constraint Programming within the heuristic search can result in significant benefits. The high instability in solution quality obtained by local search heuristics can be lowered by a simple combination of both methods

    Grammar-based generation of variable-selection heuristics for constraint satisfaction problems

    Get PDF
    We propose a grammar-based genetic programming framework that generates variable-selection heuristics for solving constraint satisfaction problems. This approach can be considered as a generation hyper-heuristic. A grammar to express heuristics is extracted from successful human-designed variable-selection heuristics. The search is performed on the derivation sequences of this grammar using a strongly typed genetic programming framework. The approach brings two innovations to grammar-based hyper-heuristics in this domain: the incorporation of if-then-else rules to the function set, and the implementation of overloaded functions capable of handling different input dimensionality. Moreover, the heuristic search space is explored using not only evolutionary search, but also two alternative simpler strategies, namely, iterated local search and parallel hill climbing. We tested our approach on synthetic and real-world instances. The newly generated heuristics have an improved performance when compared against human-designed heuristics. Our results suggest that the constrained search space imposed by the proposed grammar is the main factor in the generation of good heuristics. However, to generate more general heuristics, the composition of the training set and the search methodology played an important role. We found that increasing the variability of the training set improved the generality of the evolved heuristics, and the evolutionary search strategy produced slightly better results

    A constraint-based framework for configuration

    Get PDF
    The research presented here aims at providing a comprehensive framework for solving configuration problems, based on the Constraint Satisfaction paradigm. This thesis is addressing the two main issues raised by a configuration task: modeling the problem and solving it efficiently. Our approach subsumes previous approaches, incorporating both Simplification and further extension, offering increased representational power and efficiency. Modeling. We advance the idea of local, context independent models for the types of objects in the application domain, and show how the model of an artifact can be built as a composition of local models of the constituent parts. Our modeling technique integrates two mechanisms for dealing with complexity, namely composition and abstraction. Using concepts such as locality, aggregation and inheritance, it offers support and guidance as to the appropriate content and organization of the domain knowledge, thus making knowledge specification and representation less error prone, and knowledge maintenance much easier. There are two specific aspects which make modeling configuration problems challenging: the complexity and heterogeneity of relations that must be expressed, manipulated and maintained, and the dynamic nature of the configuration process. We address these issues by introducing Composite Constraint Satisfaction Problems, a new, nonstandard class of problems which extends the classic Constraint Satisfaction paradigm. Efficiency. For the purpose of the work presented here, we are only interested in providing a guaranteed optimal solution to a configuration problem. To achieve this goal, our research focused on two complementary directions. The first one led to a powerful search algorithm called Maintaining Arc Consistency Extended (MACE). By maintaining arc consistency and taking advantage of the problem structure, MACE turned out to be one of the best general purpose CSP search algorithms to date. The second research direction aimed at reducing the search effort involved in proving the optimality of the proposed solution by making use of information which is specific to individual configuration problems. By adding redundant specialized constraints, the algorithm improves dramatically the lower bound computation. Using abstraction through focusing only on relevant features allows the algorithm to take advantage of context-dependent interchangeability between component instances and discard equivalent solutions, involving the same cost as solutions that have already been explored

    Optimal impulse control problems and linear programming.

    Get PDF
    Optimal impulse control problems are, in general, difficult to solve. A current research goal is to isolate those problems that lead to tractable solutions. In this paper, we identify a special class of optimal impulse control problems which are easy to solve. Easy to solve means that solution algorithms are polynomial in time and therefore suitable to the on-line implementation in real-time problems. We do this by using a paradigm borrowed from the Operations Research field. As main result, we present a solution algorithm that converges to the exact solution in polynomial time. Our approach consists in approximating the optimal impulse control problem via a binary linear programming problem with a totally unimodular constraint matrix. Hence, solving the binary linear programming problem is equivalent to solving its linear relaxation. It turns out that any solution of the linear relaxation is a feasible solution for the optimal impulse control problem. Then, given the feasible solution, obtained solving the linear relaxation, we find the optimal solution via local search

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Constraint reasoning for differential models

    Get PDF
    The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains
    • …
    corecore