3,738 research outputs found

    Integrating driving and traffic simulators for the study of railway level crossing safety interventions: a methodology

    Get PDF
    Safety at Railway Level Crossings (RLXs) is an important issue within the Australian transport system. Crashes at RLXs involving road vehicles in Australia are estimated to cost $10 million each year. Such crashes are mainly due to human factors; unintentional errors contribute to 46% of all fatal collisions and are far more common than deliberate violations. This suggests that innovative intervention targeting drivers are particularly promising to improve RLX safety. In recent years there has been a rapid development of a variety of affordable technologies which can be used to increase driver’s risk awareness around crossings. To date, no research has evaluated the potential effects of such technologies at RLXs in terms of safety, traffic and acceptance of the technology. Integrating driving and traffic simulations is a safe and affordable approach for evaluating these effects. This methodology will be implemented in a driving simulator, where we recreated realistic driving scenario with typical road environments and realistic traffic. This paper presents a methodology for evaluating comprehensively potential benefits and negative effects of such interventions: this methodology evaluates driver awareness at RLXs , driver distraction and workload when using the technology . Subjective assessment on perceived usefulness and ease of use of the technology is obtained from standard questionnaires. Driving simulation will provide a model of driving behaviour at RLXs which will be used to estimate the effects of such new technology on a road network featuring RLX for different market penetrations using a traffic simulation. This methodology can assist in evaluating future safety interventions at RLXs

    Crash/Near-Crash: Impact of Secondary Tasks and Real-Time Detection of Distracted Driving

    Get PDF
    The main goal of this dissertation is to investigate the problem of distracted driving from two different perspectives. First, the identification of possible sources of distraction and their associated crash/near-crash risk. That can assist government officials toward more informed decision-making process, allowing for optimized allocation of available resources to reduce roadway crashes and improve traffic safety. Second, actively counteracting the distracted driving phenomenon by quantitative evaluation of eye glance patterns. This dissertation research consists of two different parts. The first part provides an in-depth analysis for the increased crash/near-crash risk associated with different secondary task activities using the largest real-world naturalistic driving dataset (SHRP2 Naturalistic Driving Study). Several statistical and data mining techniques are developed to analyze the distracted driving and crash risk. More specifically, two different models were employed to quantify the increased risk associated with each secondary task: a baseline-category logit model, and a rule mining association model. The baseline-category logit model identified the increased risk in terms of odds ratios, while the A-priori association algorithm detected the associated risks in terms of rules. Each rule was then evaluated based on the lift index. The two models succeeded in ranking all the secondary task activities according to the associated increased crash/near-crash risk efficiently. To actively counteract to the distracted driving phenomenon, a new approach was developed to analyze eye glance patterns and quantify distracted driving behavior under safety and non-Safety Critical Events (SCEs). This approach is then applied to the Naturalistic Engagement in Secondary Tasks (NEST) dataset to investigate how drivers allocate their attention while driving, especially while distracted. The analysis revealed that distracted driving behavior can be well characterized using two new distraction risk indicators. Additional statistical analyses showed that the two indicators increase significantly for SCE compared to normal driving events. Consequently, an artificial neural network (ANN) model was developed to test the SCEs predictability power when accounting for the two new indicators. The ANN model was able to predict the SCEs with an overall accuracy of 96.1%. This outcome can help build reliable algorithms for in-vehicle driving assistance systems to alert drivers before SCEs

    Analysis of Disengagements in Semi-Autonomous Vehicles: Drivers’ Takeover Performance and Operational Implications

    Get PDF
    This report analyzes the reactions of human drivers placed in simulated Autonomous Technology disengagement scenarios. The study was executed in a human-in-the-loop setting, within a high-fidelity integrated car simulator capable of handling both manual and autonomous driving. A population of 40 individuals was tested, with metrics for control takeover quantification given by: i) response times (considering inputs of steering, throttle, and braking); ii) vehicle drift from the lane centerline after takeover as well as overall (integral) drift over an S-turn curve compared to a baseline obtained in manual driving; and iii) accuracy metrics to quantify human factors associated with the simulation experiment. Independent variables considered for the study were the age of the driver, the speed at the time of disengagement, and the time at which the disengagement occurred (i.e., how long automation was engaged for). The study shows that changes in the vehicle speed significantly affect all the variables investigated, pointing to the importance of setting up thresholds for maximum operational speed of vehicles driven in autonomous mode when the human driver serves as back-up. The results shows that the establishment of an operational threshold could reduce the maximum drift and lead to better control during takeover, perhaps warranting a lower speed limit than conventional vehicles. With regards to the age variable, neither the response times analysis nor the drift analysis provide support for any claim to limit the age of drivers of semi-autonomous vehicles

    Human-Centric Detection and Mitigation Approach for Various Levels of Cell Phone-Based Driver Distractions

    Get PDF
    abstract: Driving a vehicle is a complex task that typically requires several physical interactions and mental tasks. Inattentive driving takes a driver’s attention away from the primary task of driving, which can endanger the safety of driver, passenger(s), as well as pedestrians. According to several traffic safety administration organizations, distracted and inattentive driving are the primary causes of vehicle crashes or near crashes. In this research, a novel approach to detect and mitigate various levels of driving distractions is proposed. This novel approach consists of two main phases: i.) Proposing a system to detect various levels of driver distractions (low, medium, and high) using a machine learning techniques. ii.) Mitigating the effects of driver distractions through the integration of the distracted driving detection algorithm and the existing vehicle safety systems. In phase- 1, vehicle data were collected from an advanced driving simulator and a visual based sensor (webcam) for face monitoring. In addition, data were processed using a machine learning algorithm and a head pose analysis package in MATLAB. Then the model was trained and validated to detect different human operator distraction levels. In phase 2, the detected level of distraction, time to collision (TTC), lane position (LP), and steering entropy (SE) were used as an input to feed the vehicle safety controller that provides an appropriate action to maintain and/or mitigate vehicle safety status. The integrated detection algorithm and vehicle safety controller were then prototyped using MATLAB/SIMULINK for validation. A complete vehicle power train model including the driver’s interaction was replicated, and the outcome from the detection algorithm was fed into the vehicle safety controller. The results show that the vehicle safety system controller reacted and mitigated the vehicle safety status-in closed loop real-time fashion. The simulation results show that the proposed approach is efficient, accurate, and adaptable to dynamic changes resulting from the driver, as well as the vehicle system. This novel approach was applied in order to mitigate the impact of visual and cognitive distractions on the driver performance.Dissertation/ThesisDoctoral Dissertation Applied Psychology 201

    Computational driver behavior models for vehicle safety applications

    Get PDF
    The aim of this thesis is to investigate how human driving behaviors can be formally described in mathematical models intended for online personalization of advanced driver assistance systems (ADAS) or offline virtual safety evaluations. Both longitudinal (braking) and lateral (steering) behaviors in routine driving and emergencies are addressed. Special attention is paid to driver glance behavior in critical situations and the role of peripheral vision.First, a hybrid framework based on autoregressive models with exogenous input (ARX-models) is employed to predict and classify driver control in real time. Two models are suggested, one targeting steering behavior and the other longitudinal control behavior. Although the predictive performance is unsatisfactory, both models can distinguish between different driving styles.Moreover, a basic model for drivers\u27 brake initiation and modulation in critical longitudinal situations (specifically for rear-end conflicts) is constructed. The model is based on a conceptual framework of noisy evidence accumulation and predictive processing. Several model extensions related to gaze behavior are also proposed and successfully fitted to real-world crashes and near-crashes. The influence of gaze direction is further explored in a driving simulator study, showing glance response times to be independent of the glance\u27s visual eccentricity, while brake response times increase for larger gaze angles, as does the rate of missed target detections.Finally, the potential of a set of metrics to quantify subjectively perceived risk in lane departure situations to explain drivers\u27 recovery steering maneuvers was investigated. The most influential factors were the relative yaw angle and splay angle error at steering initiation. Surprisingly, it was observed that drivers often initiated the recovery steering maneuver while looking off-road.To sum up, the proposed models in this thesis facilitate the development of personalized ADASs and contribute to trustworthy virtual evaluations of current, future, and conceptual safety systems. The insights and ideas contribute to an enhanced, human-centric system development, verification, and validation process. In the long term, this will likely lead to improved vehicle safety and a reduced number of severe injuries and fatalities in traffic

    Driver distraction from cell phone use and potential for self-limiting behavior

    Full text link
    This project consists of three parts. The first is a review of the literature on driver distraction that primarily focuses on cell phone use. The second two parts involve analysis of an existing field operational test (FOT) database to examine: 1) self-limiting behavior on the part of drivers who use cell phones, and 2) eye glance patterns for drivers involved in cell phone conversations and visual-manual tasks (e.g., texting) as compared to no-task baseline driving. The literature review discusses the apparent contradiction between results of case-crossover and simulator studies that show increases in instantaneous risk due to talking on a cell phone and results of crash-data analyses that show no substantial increase in crashes associated with increases in cell phone use in vehicles. The first data analysis shows some evidence of self-limiting behavior in cell phone conversations. Drivers initiate calls when on slower roads and at slower speeds, often when stopped. However, they call more at night, which is a higher-risk time to drive. The second analysis showed that eye glances when talking on the phone are fixated on the road for longer periods of time than in baseline driving. In contrast, on-road eye glances when engaged in a visual-manual (VM) task are short and numerous. Eye glances on and off the road are about equal in length, and the average total off-road gaze time for a five-second interval is about 2.8 secs, or 57% of the time. Average off-road gaze time out of five seconds in baseline driving is about 0.8 sec, or 16% of the time. Results show the differences in distraction mechanism between cell-phone conversations and texting. Ramifications for potential interventions are discussed.State Farm Insurancehttp://deepblue.lib.umich.edu/bitstream/2027.42/108381/1/103022.pd

    Modeling driver distraction mechanism and its safety impact in automated vehicle environment.

    Get PDF
    Automated Vehicle (AV) technology expects to enhance driving safety by eliminating human errors. However, driver distraction still exists under automated driving. The Society of Automotive Engineers (SAE) has defined six levels of driving automation from Level 0~5. Until achieving Level 5, human drivers are still needed. Therefore, the Human-Vehicle Interaction (HVI) necessarily diverts a driver’s attention away from driving. Existing research mainly focused on quantifying distraction in human-operated vehicles rather than in the AV environment. It causes a lack of knowledge on how AV distraction can be detected, quantified, and understood. Moreover, existing research in exploring AV distraction has mainly pre-defined distraction as a binary outcome and investigated the patterns that contribute to distraction from multiple perspectives. However, the magnitude of AV distraction is not accurately quantified. Moreover, past studies in quantifying distraction have mainly used wearable sensors’ data. In reality, it is not realistic for drivers to wear these sensors whenever they drive. Hence, a research motivation is to develop a surrogate model that can replace the wearable device-based data to predict AV distraction. From the safety perspective, there lacks a comprehensive understanding of how AV distraction impacts safety. Furthermore, a solution is needed for safely offsetting the impact of distracted driving. In this context, this research aims to (1) improve the existing methods in quantifying Human-Vehicle Interaction-induced (HVI-induced) driver distraction under automated driving; (2) develop a surrogate driver distraction prediction model without using wearable sensor data; (3) quantitatively reveal the dynamic nature of safety benefits and collision hazards of HVI-induced visual and cognitive distractions under automated driving by mathematically formulating the interrelationships among contributing factors; and (4) propose a conceptual prototype of an AI-driven, Ultra-advanced Collision Avoidance System (AUCAS-L3) targeting HVI-induced driver distraction under automated driving without eye-tracking and video-recording. Fixation and pupil dilation data from the eye tracking device are used to model driver distraction, focusing on visual and cognitive distraction, respectively. In order to validate the proposed methods for measuring and modeling driver distraction, a data collection was conducted by inviting drivers to try out automated driving under Level 3 automation on a simulator. Each driver went through a jaywalker scenario twice, receiving a takeover request under two types of HVI, namely “visual only” and “visual and audible”. Each driver was required to wear an eye-tracker so that the fixation and pupil dilation data could be collected when driving, along with driving performance data being recorded by the simulator. In addition, drivers’ demographical information was collected by a pre-experiment survey. As a result, the magnitude of visual and cognitive distraction was quantified, exploring the dynamic changes over time. Drivers are more concentrated and maintain a higher level of takeover readiness under the “visual and audible” warning, compared to “visual only” warning. The change of visual distraction was mathematically formulated as a function of time. In addition, the change of visual distraction magnitude over time is explained from the driving psychology perspective. Moreover, the visual distraction was also measured by direction in this research, and hotspots of visual distraction were identified with regard to driving safety. When discussing the cognitive distraction magnitude, the driver’s age was identified as a contributing factor. HVI warning type contributes to the significant difference in cognitive distraction acceleration rate. After drivers reach the maximum visual distraction, cognitive distraction tends to increase continuously. Also, this research contributes to quantitatively revealing how visual and cognitive distraction impacts the collision hazards, respectively. Moreover, this research contributes to the literature by developing deep learning-based models in predicting a driver’s visual and cognitive distraction intensity, focusing on demographics, HVI warning types, and driving performance. As a solution to safety issues caused by driver distraction, the AUCAS-L3 has been proposed. The AUCAS-L3 is validated with high accuracies in predicting (a) whether a driver is distracted and does not perform takeover actions and (b) whether crashes happen or not if taken over. After predicting the presence of driver distraction or a crash, AUCAS-L3 automatically applies the brake pedal for drivers as effective and efficient protection to driver distraction under automated driving. And finally, a conceptual prototype in predicting AV distraction and traffic conflict was proposed, which can predict the collision hazards in advance of 0.82 seconds on average

    Developing Predictive Models of Driver Behaviour for the Design of Advanced Driving Assistance Systems

    Get PDF
    World-wide injuries in vehicle accidents have been on the rise in recent years, mainly due to driver error. The main objective of this research is to develop a predictive system for driving maneuvers by analyzing the cognitive behavior (cephalo-ocular) and the driving behavior of the driver (how the vehicle is being driven). Advanced Driving Assistance Systems (ADAS) include different driving functions, such as vehicle parking, lane departure warning, blind spot detection, and so on. While much research has been performed on developing automated co-driver systems, little attention has been paid to the fact that the driver plays an important role in driving events. Therefore, it is crucial to monitor events and factors that directly concern the driver. As a goal, we perform a quantitative and qualitative analysis of driver behavior to find its relationship with driver intentionality and driving-related actions. We have designed and developed an instrumented vehicle (RoadLAB) that is able to record several synchronized streams of data, including the surrounding environment of the driver, vehicle functions and driver cephalo-ocular behavior, such as gaze/head information. We subsequently analyze and study the behavior of several drivers to find out if there is a meaningful relation between driver behavior and the next driving maneuver
    corecore