14,518 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Multiple Target, Multiple Type Filtering in the RFS Framework

    Full text link
    A Multiple Target, Multiple Type Filtering (MTMTF) algorithm is developed using Random Finite Set (RFS) theory. First, we extend the standard Probability Hypothesis Density (PHD) filter for multiple types of targets, each with distinct detection properties, to develop a multiple target, multiple type filtering, N-type PHD filter, where N≥2N\geq2, for handling confusions among target types. In this approach, we assume that there will be confusions between detections, i.e. clutter arises not just from background false positives, but also from target confusions. Then, under the assumptions of Gaussianity and linearity, we extend the Gaussian mixture (GM) implementation of the standard PHD filter for the proposed N-type PHD filter termed the N-type GM-PHD filter. Furthermore, we analyze the results from simulations to track sixteen targets of four different types using a four-type (quad) GM-PHD filter as a typical example and compare it with four independent GM-PHD filters using the Optimal Subpattern Assignment (OSPA) metric. This shows the improved performance of our strategy that accounts for target confusions by efficiently discriminating them

    Poisson multi-Bernoulli conjugate prior for multiple extended object filtering

    Full text link
    This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target d-GLMB and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets
    • …
    corecore