445 research outputs found

    Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks

    Full text link
    We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our method can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm

    Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images

    Full text link
    Convolutional neural networks (CNNs) show impressive performance for image classification and detection, extending heavily to the medical image domain. Nevertheless, medical experts are sceptical in these predictions as the nonlinear multilayer structure resulting in a classification outcome is not directly graspable. Recently, approaches have been shown which help the user to understand the discriminative regions within an image which are decisive for the CNN to conclude to a certain class. Although these approaches could help to build trust in the CNNs predictions, they are only slightly shown to work with medical image data which often poses a challenge as the decision for a class relies on different lesion areas scattered around the entire image. Using the DiaretDB1 dataset, we show that on retina images different lesion areas fundamental for diabetic retinopathy are detected on an image level with high accuracy, comparable or exceeding supervised methods. On lesion level, we achieve few false positives with high sensitivity, though, the network is solely trained on image-level labels which do not include information about existing lesions. Classifying between diseased and healthy images, we achieve an AUC of 0.954 on the DiaretDB1.Comment: Accepted in Proc. IEEE International Conference on Image Processing (ICIP), 201

    Advanced Artery / Vein Classification System in Retinal Images for Diabetic Retinopathy

    Get PDF
    Diabetic retinopathy is that the single largest explanation for sight loss and visual impairment in eighteen to sixty five year olds. Screening programs for the calculable 1 to 6 % of the diabetic population are incontestable to be value and sight saving, but unfortunately there are inadequate screening resources. An automatic screening system might facilitate to solve this resource short fall.The retinal vasculature consists of the arteries and veins with their tributaries that are visible at intervals in the retinal images.This paper proposes a graphbased artery vein classification system inretinal images for diabetic retinopathybased on the structural informationextracted from the retinalvasculature. The method at first extracts agraph from the vascular tree and then makes a decision on the typeof each intersection point (graph node).Based on this node types one of the twolabels are assigned to each vessel segment.Finally, the A/V classes are assigned tothe sub graph labels by extracting a set ofintensity features and using artificialneural network. DOI: 10.17762/ijritcc2321-8169.15017

    Automated Retinal Lesion Detection via Image Saliency Analysis

    Get PDF
    Background and objective:The detection of abnormalities such as lesions or leakage from retinal images is an important health informatics task for automated early diagnosis of diabetic and malarial retinopathy or other eye diseases, in order to prevent blindness and common systematic conditions. In this work, we propose a novel retinal lesion detection method by adapting the concepts of saliency. Methods :Retinal images are firstly segmented as superpixels, two new saliency feature representations: uniqueness and compactness, are then derived to represent the superpixels. The pixel level saliency is then estimated from these superpixel saliency values via a bilateral filter. These extracted saliency features form a matrix for low-rank analysis to achieve saliency detection. The precise contour of a lesion is finally extracted from the generated saliency map after removing confounding structures such as blood vessels, the optic disc, and the fovea. The main novelty of this method is that it is an effective tool for detecting different abnormalities at pixel-level from different modalities of retinal images, without the need to tune parameters. Results:To evaluate its effectiveness, we have applied our method to seven public datasets of diabetic and malarial retinopathy with four different types of lesions: exudate, hemorrhage, microaneurysms, and leakage. The evaluation was undertaken at pixel-level, lesion-level, or image-level according to ground truth availability in these datasets. Conclusions:The experimental results show that the proposed method outperforms existing state-of-the-art ones in applicability, effectiveness, and accuracy

    Blended Multi-Modal Deep ConvNet Features for Diabetic Retinopathy Severity Prediction

    Full text link
    Diabetic Retinopathy (DR) is one of the major causes of visual impairment and blindness across the world. It is usually found in patients who suffer from diabetes for a long period. The major focus of this work is to derive optimal representation of retinal images that further helps to improve the performance of DR recognition models. To extract optimal representation, features extracted from multiple pre-trained ConvNet models are blended using proposed multi-modal fusion module. These final representations are used to train a Deep Neural Network (DNN) used for DR identification and severity level prediction. As each ConvNet extracts different features, fusing them using 1D pooling and cross pooling leads to better representation than using features extracted from a single ConvNet. Experimental studies on benchmark Kaggle APTOS 2019 contest dataset reveals that the model trained on proposed blended feature representations is superior to the existing methods. In addition, we notice that cross average pooling based fusion of features from Xception and VGG16 is the most appropriate for DR recognition. With the proposed model, we achieve an accuracy of 97.41%, and a kappa statistic of 94.82 for DR identification and an accuracy of 81.7% and a kappa statistic of 71.1% for severity level prediction. Another interesting observation is that DNN with dropout at input layer converges more quickly when trained using blended features, compared to the same model trained using uni-modal deep features.Comment: 18 pages, 8 figures, published in Electronics MDPI journa
    • …
    corecore