529 research outputs found

    Long-Term Preservation of Digital Records, Part I: A Theoretical Basis

    Get PDF
    The Information Revolution is making preservation of digital records an urgent issue. Archivists have grappled with the question of how to achieve this for about 15 years. We focus on limitations to preservation, identifying precisely what can be preserved and what cannot. Our answer comes from the philosophical theory of knowledge, especially its discussion about the limits of what can be communicated. Philosophers have taught that answers to critical questions have been obscured by "failure to understand the logic of our language". We can clarify difficulties by paying extremely close attention to the meaning of words such as 'knowledge', 'information', 'the original', and 'dynamic'. What is valuable in transmitted and stored messages, and what should be preserved, is an abstraction, the pattern inherent in each transmitted and stored digital record. This answer has, in fact, been lurking just below the surface of archival literature. To make progress, archivists must collaborate with software engineers. Understanding perspectives across disciplinary boundaries will be needed.

    Organizations decentered: data objects, technology and knowledge

    Get PDF
    Data are no longer simply a component of administrative and managerial work but a pervasive resource and medium through which organizations come to know and act upon the contingencies they confront. We theorize how the ongoing technological developments reinforce the traditional functions of data as instruments of management and control but also reframe and extend their role. By rendering data as technical entities, digital technologies transform the process of knowing and the knowledge functions data fulfil in socioeconomic life. These functions are most of the times mediated by putting together disperse and steadily updatable data in more stable entities we refer to as data objects. Users, customers, products, and physical machines rendered as data objects become the technical and cognitive means through which organizational knowledge, patterns, and practices develop. Such conditions loosen the dependence of data from domain knowledge, reorder the relative significance of internal versus external references in organizations, and contribute to a paradigmatic contemporary development that we identify with the decentering of organizations of which digital platforms are an important specimen

    A new in-camera color imaging model for computer vision

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestĂŒtzten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal fĂŒr fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestĂŒtzten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollstĂ€ndige volumetrische Information einer Szene. Diese Technologie bietet dabei das grĂ¶ĂŸte Potenzial, immersive Erlebnisse zu mehr RealitĂ€tsnĂ€he zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der InkompatibilitĂ€t derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen fĂŒr 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die KompatibilitĂ€t zwischen Anwendungen und GerĂ€ten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken fĂŒr eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollstĂ€ndige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen AnsĂ€tze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung
    • 

    corecore