2,464 research outputs found

    A Game-theoretic Framework for Revenue Sharing in Edge-Cloud Computing System

    Full text link
    We introduce a game-theoretic framework to ex- plore revenue sharing in an Edge-Cloud computing system, in which computing service providers at the edge of the Internet (edge providers) and computing service providers at the cloud (cloud providers) co-exist and collectively provide computing resources to clients (e.g., end users or applications) at the edge. Different from traditional cloud computing, the providers in an Edge-Cloud system are independent and self-interested. To achieve high system-level efficiency, the manager of the system adopts a task distribution mechanism to maximize the total revenue received from clients and also adopts a revenue sharing mechanism to split the received revenue among computing servers (and hence service providers). Under those system-level mechanisms, service providers attempt to game with the system in order to maximize their own utilities, by strategically allocating their resources (e.g., computing servers). Our framework models the competition among the providers in an Edge-Cloud system as a non-cooperative game. Our simulations and experiments on an emulation system have shown the existence of Nash equilibrium in such a game. We find that revenue sharing mechanisms have a significant impact on the system-level efficiency at Nash equilibria, and surprisingly the revenue sharing mechanism based directly on actual contributions can result in significantly worse system efficiency than Shapley value sharing mechanism and Ortmann proportional sharing mechanism. Our framework provides an effective economics approach to understanding and designing efficient Edge-Cloud computing systems

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio
    • …
    corecore