3,282 research outputs found

    A Game Theoretical Analysis of Localization Security in Wireless Sensor Networks with Adversaries

    Get PDF
    Wireless Sensor Networks (WSN) support data collection and distributed data processing by means of very small sensing devices that are easy to tamper and cloning: therefore classical security solutions based on access control and strong authentication are difficult to deploy. In this paper we look at the problem of assessing security of node localization. In particular, we analyze the scenario in which Verifiable Multilateration (VM) is used to localize nodes and a malicious node (i.e., the adversary) try to masquerade as non-malicious. We resort to non-cooperative game theory and we model this scenario as a two-player game. We analyze the optimal players' strategy and we show that the VM is indeed a proper mechanism to reduce fake positions.Comment: International Congress on Ultra Modern Telecommunications and Control Systems 2010. (ICUMT'10

    Intrusion-aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Get PDF
    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.Comment: 19 pages, 7 figure

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • ā€¦
    corecore