6,157 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Integrating Energy Storage into the Smart Grid: A Prospect Theoretic Approach

    Full text link
    In this paper, the interactions and energy exchange decisions of a number of geographically distributed storage units are studied under decision-making involving end-users. In particular, a noncooperative game is formulated between customer-owned storage units where each storage unit's owner can decide on whether to charge or discharge energy with a given probability so as to maximize a utility that reflects the tradeoff between the monetary transactions from charging/discharging and the penalty from power regulation. Unlike existing game-theoretic works which assume that players make their decisions rationally and objectively, we use the new framework of prospect theory (PT) to explicitly incorporate the users' subjective perceptions of their expected utilities. For the two-player game, we show the existence of a proper mixed Nash equilibrium for both the standard game-theoretic case and the case with PT considerations. Simulation results show that incorporating user behavior via PT reveals several important insights into load management as well as economics of energy storage usage. For instance, the results show that deviations from conventional game theory, as predicted by PT, can lead to undesirable grid loads and revenues thus requiring the power company to revisit its pricing schemes and the customers to reassess their energy storage usage choices.Comment: 5 pages, 4 figures, conferenc

    Incentives-Based Mechanism for Efficient Demand Response Programs

    Full text link
    In this work we investigate the inefficiency of the electricity system with strategic agents. Specifically, we prove that without a proper control the total demand of an inefficient system is at most twice the total demand of the optimal outcome. We propose an incentives scheme that promotes optimal outcomes in the inefficient electricity market. The economic incentives can be seen as an indirect revelation mechanism that allocates resources using a one-dimensional message space per resource to be allocated. The mechanism does not request private information from users and is valid for any concave customer's valuation function. We propose a distributed implementation of the mechanism using population games and evaluate the performance of four popular dynamics methods in terms of the cost to implement the mechanism. We find that the achievement of efficiency in strategic environments might be achieved at a cost, which is dependent on both the users' preferences and the dynamic evolution of the system. Some simulation results illustrate the ideas presented throughout the paper.Comment: 38 pages, 9 figures, submitted to journa

    Market-based Allocation of Local Flexibility in Smart Grids: A Mechanism Design Approach

    Get PDF

    A Classification Scheme for Local Energy Trading

    Get PDF
    The current trend towards more renewable and sustainable energy generation leads to an increased interest in new energy management systems and the concept of a smart grid. One important aspect of this is local energy trading, which is an extension of existing electricity markets by including prosumers, who are consumers also producing electricity. Prosumers having a surplus of energy may directly trade this surplus with other prosumers, which are currently in demand. In this paper, we present an overview of the literature in the area of local energy trading. In order to provide structure to the broad range of publications, we identify key characteristics, define the various settings, and cluster the considered literature along these characteristics. We identify three main research lines, each with a distinct setting and research question. We analyze and compare the settings, the used techniques, and the results and findings within each cluster and derive connections between the clusters. In addition, we identify important aspects, which up to now have to a large extent been neglected in the considered literature and highlight interesting research directions, and open problems for future work.Comment: 38 pages, 1 figure, This work has been submitted and accepted at OR Spectru

    Computational Intelligence Approaches for Energy Optimization in Microgrids

    Get PDF
    The future electrical system termed as smart grid represents a significant paradigm shift for power industry. Nowadays, microgrids are becoming smarter with the integration of renewable energy resources (RESs) , diesel generators , energy storage systems (ESS), and plug-in electric vehicles (PEV or EV) . However, these integration bring with new challenges for intelligent management systems. The classical power generation approaches can no longer be applied to a microgrid with unpredictable renewable energy resources. To relive these problem, a proper power system optimization and a suitable coordination strategy are needed to balance the supply and demand. This thesis presents three projects to study the optimization and control for smart community and to investigate the strategic impact and the energy trading techniques for interconnected microgrids. The first goal of this thesis is to propose a new game-theoretic framework to study the optimization and decision making of multi-players in the distributed power system. The proposed game theoretic special concept-rational reaction set (RRS) is capable to model the game of the distributed energy providers and the large residential consumers. Meanwhile, the residential consumers are able to participate in the retail electricity market to control the market price. Case studies are conducted to validate the system framework using the proposed game theoretic method. The simulation results show the effectiveness and the accuracy of the proposed strategic framework for obtaining the optimum profits for players participating in this market. The second goal of the thesis is to study a distributed convex optimization framework for energy trading of interconnected microgrids to improve the reliability of system operation. In this work, a distributed energy trading approach for interconnected operation of islanded microgrids is studied. Specifically, the system includes several islanded microgrids that can trade energy in a given topology. A distributed iterative deep cut ellipsoid (DCE) algorithm is implemented with limited information exchange. This approach will address the scalability issue and also secure local information on cost functions. During the iterative process, the information exchange among interconnected microgrids is restricted to electricity prices and expected trading energy. Numerical results are presented in terms of the convergent rate of the algorithm for different topologies, and the performance of the DCE algorithm is compared with sub-gradient algorithm. The third goal of this thesis is to use proper optimization approaches to motivate the household consumers to either shift their loads from peaking periods or reduce their consumption. Genetic algorithm (GA) and dynamic programming (DP) based smart appliance scheduling schemes and time-of-use pricing are investigated for comparative studies with demand response
    • ā€¦
    corecore