4,194 research outputs found

    Game Theoretic Formation of a Centrality Based Network

    Full text link
    We model the formation of networks as a game where players aspire to maximize their own centrality by increasing the number of other players to which they are path-wise connected, while simultaneously incurring a cost for each added adjacent edge. We simulate the interactions between players using an algorithm that factors in rational strategic behavior based on a common objective function. The resulting networks exhibit pairwise stability, from which we derive necessary stable conditions for specific graph topologies. We then expand the model to simulate non-trivial games with large numbers of players. We show that using conditions necessary for the stability of star topologies we can induce the formation of hub players that positively impact the total welfare of the network.Comment: Submitted to 2012 ASE Social Informatics Conferenc

    Generating Representative ISP Technologies From First-Principles

    Full text link
    Understanding and modeling the factors that underlie the growth and evolution of network topologies are basic questions that impact capacity planning, forecasting, and protocol research. Early topology generation work focused on generating network-wide connectivity maps, either at the AS-level or the router-level, typically with an eye towards reproducing abstract properties of observed topologies. But recently, advocates of an alternative "first-principles" approach question the feasibility of realizing representative topologies with simple generative models that do not explicitly incorporate real-world constraints, such as the relative costs of router configurations, into the model. Our work synthesizes these two lines by designing a topology generation mechanism that incorporates first-principles constraints. Our goal is more modest than that of constructing an Internet-wide topology: we aim to generate representative topologies for single ISPs. However, our methods also go well beyond previous work, as we annotate these topologies with representative capacity and latency information. Taking only demand for network services over a given region as input, we propose a natural cost model for building and interconnecting PoPs and formulate the resulting optimization problem faced by an ISP. We devise hill-climbing heuristics for this problem and demonstrate that the solutions we obtain are quantitatively similar to those in measured router-level ISP topologies, with respect to both topological properties and fault-tolerance
    • …
    corecore