87 research outputs found

    A Survey on Monochromatic Connections of Graphs

    Get PDF
    The concept of monochromatic connection of graphs was introduced by Caro and Yuster in 2011. Recently, a lot of results have been published about it. In this survey, we attempt to bring together all the results that dealt with it. We begin with an introduction, and then classify the results into the following categories: monochromatic connection coloring of edge-version, monochromatic connection coloring of vertex-version, monochromatic index, monochromatic connection coloring of total-version.Comment: 26 pages, 3 figure

    Domination parameters with number 2: Interrelations and algorithmic consequences

    Get PDF
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure

    Pairwise Kidney Exchange

    Get PDF
    The theoretical literature on exchange of indivisible goods finds natural application in organizing the exchange of live donor kidneys for transplant. However, in kidney exchange, there are constraints on the size of feasible exchanges. Initially, kidney exchanges are likely to be pairwise exchanges, between just two patient-donor pairs, as these are logistically simpler than larger exchanges. Furthermore, the experience of many American surgeons suggests to them that preferences over kidneys are approximately 0-1, i.e. that patients and surgeons should be largely indifferent among healthy donors whose kidneys are compatible with the patient. This is because, in the United States, transplants of compatible live kidneys have about equal graft survival probabilities, regardless of the closeness of tissue types between patient and donor. We show that, although the pairwise constraint eliminates some potential exchanges, there is a wide class of constrained-efficient mechanisms that are strategy-proof when patient-donor pairs and surgeons have 0-1 preferences. This class of mechanisms includes deterministic mechanisms that would accomodate the kinds of priority setting that organ banks currently use to allocate cadaver organs, as well as stochastic mechanisms that allow distributive justice issues to be

    Gallai-Ramsey and vertex proper connection numbers

    Get PDF
    Given a complete graph G, we consider two separate scenarios. First, we consider the minimum number N such that every coloring of G using exactly k colors contains either a rainbow triangle or a monochromatic star on t vertices. This number is known for small cases and generalized for larger cases for a fixed k. Second, we introduce the vertex proper connection number of a graph and provide a relationship to the chromatic number of minimally connected subgraphs. Also a notion of total proper connection is introduced and a question is asked about a possible relationship between the total proper connection number and the vertex and edge proper connection numbers

    How likely is an i.i.d. degree sequence to be graphical?

    Full text link
    Given i.i.d. positive integer valued random variables D_1,...,D_n, one can ask whether there is a simple graph on n vertices so that the degrees of the vertices are D_1,...,D_n. We give sufficient conditions on the distribution of D_i for the probability that this be the case to be asymptotically 0, {1/2} or strictly between 0 and {1/2}. These conditions roughly correspond to whether the limit of nP(D_i\geq n) is infinite, zero or strictly positive and finite. This paper is motivated by the problem of modeling large communications networks by random graphs.Comment: Published at http://dx.doi.org/10.1214/105051604000000693 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Parameters related to fractional domination in graphs.

    Get PDF
    Thesis (M.Sc.)-University of Natal, 1995.The use of characteristic functions to represent well-known sets in graph theory such as dominating, irredundant, independent, covering and packing sets - leads naturally to fractional versions of these sets and corresponding fractional parameters. Let S be a dominating set of a graph G and f : V(G)~{0,1} the characteristic function of that set. By first translating the restrictions which define a dominating set from a set-based to a function-based form, and then allowing the function f to map the vertex set to the unit closed interval, we obtain the fractional generalisation of the dominating set S. In chapter 1, known domination-related parameters and their fractional generalisations are introduced, relations between them are investigated, and Gallai type results are derived. Particular attention is given to graphs with symmetry and to products of graphs. If instead of replacing the function f : V(G)~{0,1} with a function which maps the vertex set to the unit closed interval we introduce a function f' which maps the vertex set to {0, 1, ... ,k} (where k is some fixed, non-negative integer) and a corresponding change in the restrictions on the dominating set, we obtain a k-dominating function. In chapter 2 corresponding k-parameters are considered and are related to the classical and fractional parameters. The calculations of some well known fractional parameters are expressed as optimization problems involving the k- parameters. An e = 1 function is a function f : V(G)~[0,1] which obeys the restrictions that (i) every non-isolated vertex u is adjacent to some vertex v such that f(u)+f(v) = 1, and every isolated vertex w has f(w) = 1. In chapter 3 a theory of e = 1 functions and parameters is developed. Relationships are traced between e = 1 parameters and those previously introduced, some Gallai type results are derived for the e = 1 parameters, and e = 1 parameters are determined for several classes of graphs. The e = 1 theory is applied to derive new results about classical and fractional domination parameters
    corecore