48 research outputs found

    A discontinuous Galerkin Trefftz type method for solving the two dimensional Maxwell equations

    Get PDF
    International audienceTrefftz methods are known to be very efficient to reduce the numerical pollution when associated to plane wave basis. However, these local basis functions are not adapted to the computation of evanescent modes or corner singularities. In this article, we consider a two dimensional time-harmonic Maxwell system and we propose a formulation which allows to design an electromagnetic Trefftz formulation associated to local Galerkin basis computed thanks to an auxiliary Nédélec finite element method. The results are illustrated with numerous numerical examples. The considered test cases reveal that the short range and long range propagation phenomena are both well taken into account

    Interior penalty discontinuous Galerkin method for Maxwell's equations: Energy norm error estimates

    Get PDF
    AbstractWe develop the symmetric interior penalty discontinuous Galerkin (DG) method for the time-dependent Maxwell equations in second-order form. We derive optimal a priori error estimates in the energy norm for smooth solutions. We also consider the case of low-regularity solutions that have singularities in space

    A stabilized P1 domain decomposition finite element method for time harmonic Maxwell’s equations

    Get PDF
    One way of improving the behavior of finite element schemes for classical, time-dependent Maxwell’s equations is to render their hyperbolic character to elliptic form. This paper is devoted to the study of a stabilized linear, domain decomposition, finite element method for the time harmonic Maxwell’s equations, in a dual form, obtained through the Laplace transformation in time. The model problem is for the particular case of the dielectric permittivity function which is assumed to be constant in a boundary neighborhood. The discrete problem is coercive in a symmetrized norm, equivalent to the discrete norm of the model problem. This yields discrete stability, which together with continuity guarantees the well-posedness of the discrete problem, cf Arnold et al. (2002) [3], Di Pietro and Ern (2012) [45]. The convergence is addressed both in a priori and a posteriori settings. In the a priori error estimates we confirm the theoretical convergence of the scheme in a L2-based, gradient dependent, triple norm. The order of convergence is O(h) in weighted Sobolev space H2w(Ω), and hence optimal. Here, the weight w := w(ε, s) where ε is the dielectric permittivity function and s is the Laplace transformation variable. We also derive, similar, optimal a posteriori error estimates controlled by a certain, weighted, norm of the residuals of the computed solution over the domain and at the boundary (involving the relevant jump terns) and hence independent of the unknown exact solution. The a posteriori approach is used, e.g. in constructing adaptive algorithms for the computational purposes, which is the subject of a forthcoming paper. Finally, through implementing several numerical examples, we validate the robustness of the proposed scheme

    Three-dimensional individual and joint inversion of direct current resistivity and electromagnetic data

    Get PDF
    The objective of our studies is the combination of electromagnetic and direct current (DC) resistivity methods in a joint inversion approach to improve the reconstruction of a given conductivity distribution. We utilize the distinct sensitivity patterns of different methods to enhance the overall resolution power and ensure a more reliable imaging result. In order to simplify the work with more than one electromagnetic method and establish a flexible and state-of-the-art software basis, we developed new DC resistivity and electromagnetic forward modeling and inversion codes based on finite elements of second order on unstructured grids. The forward operators are verified using analytical solutions and convergence studies before we apply a regularized Gauss-Newton scheme and successfully invert synthetic data sets. Finally, we link both codes with each other in a joint inversion. In contrast to most widely used joint inversion strategies, where different data sets are combined in a single least-squares problem resulting in a large system of equations, we introduce a sequential approach that cycles through the different methods iteratively. This way, we avoid several difficulties such as the determination of the full set of regularization parameters or a weighting of the distinct data sets. The sequential approach makes use of a smoothness regularization operator which penalizes the deviation of the model parameters from a given reference model. In our sequential strategy, we use the result of the preceding individual inversion scheme as reference model for the following one. We successfully apply this approach to synthetic data sets and show that the combination of at least two methods yields a significantly improved parameter model compared to the individual inversion results.Ziel der vorliegenden Arbeit ist die gemeinsame Inversion (\"joint inversion\") elektromagnetischer und geoelektrischer Daten zur Verbesserung des rekonstruierten Leitfähigkeitsmodells. Dabei nutzen wir die verschiedenartigen Sensitivitäten der Methoden aus, um die Auflösung zu erhöhen und ein zuverlässigeres Ergebnis zu erhalten. Um die Arbeit mit mehr als einer Methode zu vereinfachen und eine flexible Softwarebasis auf dem neuesten Stand der Forschung zu etablieren, wurden zwei Codes zur Modellierung und Inversion geoelektrischer als auch elektromagnetischer Daten neu entwickelt, die mit finiten Elementen zweiter Ordnung auf unstrukturierten Gittern arbeiten. Die Vorwärtsoperatoren werden mithilfe analytischer Lösungen und Konvergenzstudien verifiziert, bevor wir ein regularisiertes Gauß-Newton-Verfahren zur Inversion synthetischer Datensätze anwenden. Im Gegensatz zur meistgenutzten \"joint inversion\"-Strategie, bei der verschiedene Daten in einem einzigen Minimierungsproblem kombiniert werden, was in einem großen Gleichungssystem resultiert, stellen wir schließlich einen sequentiellen Ansatz vor, der zyklisch durch die einzelnen Methoden iteriert. So vermeiden wir u.a. eine komplizierte Wichtung der verschiedenen Daten und die Bestimmung aller Regularisierungsparameter in einem Schritt. Der sequentielle Ansatz wird über die Anwendung einer Glättungsregularisierung umgesetzt, bei der die Abweichung der Modellparameter zu einem gegebenen Referenzmodell bestraft wird. Wir nutzen das Ergebnis der vorangegangenen Einzelinversion als Referenzmodell für die folgende Inversion. Der Ansatz wird erfolgreich auf synthetische Datensätze angewendet und wir zeigen, dass die Kombination von mehreren Methoden eine erhebliche Verbesserung des Inversionsergebnisses im Vergleich zu den Einzelinversionen liefert

    Scalable domain decomposition methods for finite element approximations of transient and electromagnetic problems

    Get PDF
    The main object of study of this thesis is the development of scalable and robust solvers based on domain decomposition (DD) methods for the linear systems arising from the finite element (FE) discretization of transient and electromagnetic problems. The thesis commences with a theoretical review of the curl-conforming edge (or Nédélec) FEs of the first kind and a comprehensive description of a general implementation strategy for h- and p- adaptive elements of arbitrary order on tetrahedral and hexahedral non-conforming meshes. Then, a novel balancing domain decomposition by constraints (BDDC) preconditioner that is robust for multi-material and/or heterogeneous problems posed in curl-conforming spaces is presented. The new method, in contrast to existent approaches, is based on the definition of the ingredients of the preconditioner according to the physical coefficients of the problem and does not require spectral information. The result is a robust and highly scalable preconditioner that preserves the simplicity of the original BDDC method. When dealing with transient problems, the time direction offers itself an opportunity for further parallelization. Aiming to design scalable space-time solvers, first, parallel-in-time parallel methods for linear and non-linear ordinary differential equations (ODEs) are proposed, based on (non-linear) Schur complement efficient solvers of a multilevel partition of the time interval. Then, these ideas are combined with DD concepts in order to design a two-level preconditioner as an extension to space-time of the BDDC method. The key ingredients for these new methods are defined such that they preserve the time causality, i.e., information only travels from the past to the future. The proposed schemes are weakly scalable in time and space-time, i.e., one can efficiently exploit increasing computational resources to solve more time steps in (approximately) the same time-to-solution. All the developments presented herein are motivated by the driving application of the thesis, the 3D simulation of the low-frequency electromagnetic response of High Temperature Superconductors (HTS). Throughout the document, an exhaustive set of numerical experiments, which includes the simulation of a realistic 3D HTS problem, is performed in order to validate the suitability and assess the parallel performance of the High Performance Computing (HPC) implementation of the proposed algorithms.L’objecte principal d’estudi d’aquesta tesi és el desenvolupament de solucionadors escalables i robustos basats en mètodes de descomposició de dominis (DD) per a sistemes lineals que sorgeixen en la discretització mitjançant elements finits (FE) de problemes transitoris i electromagnètics. La tesi comença amb una revisió teòrica dels FE d’eix (o de Nédélec) de la primera família i una descripció exhaustiva d’una estratègia d’implementació general per a elements h- i p-adaptatius d’ordre arbitrari en malles de tetraedres i hexaedres noconformes. Llavors, es presenta un nou precondicionador de descomposició de dominis balancejats per restricció (BDDC) que és robust per a problemes amb múltiples materials i/o heterogenis definits en espais curl-conformes. El nou mètode, en contrast amb els enfocaments existents, està basat en la definició dels ingredients del precondicionador segons els coeficients físics del problema i no requereix informació espectral. El resultat és un precondicionador robust i escalable que preserva la simplicitat del mètode original BDDC. Quan tractem amb problemes transitoris, la direcció temporal ofereix ella mateixa l’oportunitat de seguir explotant paral·lelisme. Amb l’objectiu de dissenyar precondicionadors en espai-temps, primer, proposem solucionadors paral·lels en temps per equacions diferencials lineals i no-lineals, basats en un solucionador eficient del complement de Schur d’una partició multinivell de l’interval de temps. Seguidament, aquestes idees es combinen amb conceptes de DD amb l’objectiu de dissenyar precondicionadors com a extensió a espai-temps dels mètodes de BDDC. Els ingredients clau d’aquests nous mètodes es defineixen de tal manera que preserven la causalitat del temps, on la informació només viatja de temps passats a temps futurs. Els esquemes proposats són dèbilment escalables en temps i en espai-temps, és a dir, es poden explotar eficientment recursos computacionals creixents per resoldre més passos de temps en (aproximadament) el mateix temps transcorregut de càlcul. Tots els desenvolupaments presentats aquí són motivats pel problema d’aplicació de la tesi, la simulació de la resposta electromagnètica de baixa freqüència dels superconductors d’alta temperatura (HTS) en 3D. Al llarg del document, es realitza un conjunt exhaustiu d’experiments numèrics, els quals inclouen la simulació d’un problema de HTS realista en 3D, per validar la idoneïtat i el rendiment paral·lel de la implementació per a computació d’alt rendiment dels algorismes proposatsPostprint (published version

    The DPG-star method

    Get PDF
    This article introduces the DPG-star (from now on, denoted DPG^*) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdetermined discretization of a boundary value problem. In the same vein, the DPG^* methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to other methods in the literature round out the newly garnered perspective. Notably, DPG^* and DPG methods can be seen as generalizations of LL\mathcal{L}\mathcal{L}^\ast and least-squares methods, respectively. A priori error analysis and a posteriori error control for the DPG^* method are considered in detail. Reports of several numerical experiments are provided which demonstrate the essential features of the new method. A notable difference between the results from the DPG^* and DPG analyses is that the convergence rates of the former are limited by the regularity of an extraneous Lagrange multiplier variable

    Theory and numerical modeling of photonic resonances: Quasinormal Modal Expansion -- Applications in Electromagnetics

    Full text link
    The idea of the modal expansion in electromagnetics is derived from the research on electromagnetic resonators, which play an essential role in developments in nanophotonics. All of the electromagnetic resonators share a common property: they possess a discrete set of special frequencies that show up as peaks in scattering spectra and are called resonant modes. These resonant modes are soon recognized to dictate the interaction between electromagnetic resonators and light. This leads to a hypothesis that the optical response of resonators is the synthesis of the excitation of each physical-resonance-state in the system: Under the excitation of external pulses, these resonant modes are initially loaded, then release their energy which contributes to the total optical responses of the resonators. These resonant modes with complex frequencies are known in the literature as the Quasi-Normal Mode (QNM). Mathematically, these QNMs correspond to solutions of the eigenvalue problem of source-free Maxwell's equations. In the case where the optical structure of resonators is unbounded and the media are dispersive (and possibly anisotropic and non-reciprocal) this requires solving non-linear (in frequency) and non-Hermitian eigenvalue problems. Thus, the whole problem boils down to the study of the spectral theory for electromagnetic Maxwell operators. As a result, modal expansion formalisms have recently received a lot of attention in photonics because of their capabilities to model the physical properties in the natural resonance-state basis of the considered system, leading to a transparent interpretation of the numerical results. This manuscript is intended to extend the study of QNM expansion formalism, in particular, and nonlinear spectral theory, in general. At the same time, several numerical modelings are provided as examples for the application of modal expansion in computations.Comment: PhD thesi

    Discontinuous Galerkin Method Applied to Navier-Stokes Equations

    Get PDF
    Discontinuous Galerkin (DG) finite element methods are becoming important techniques for the computational solution of many real-world problems describe by differential equations. They combine many attractive features of the finite element and the finite volume methods. These methods have been successfully applied to many important PDEs arising from a wide range of applications. DG methods are highly accurate numerical methods and have considerable advantages over the classical numerical methods available in the literature. DG methods can easily handle meshes with hanging nodes, elements of various types and shapes, and local spaces of different orders. Furthermore, DG methods provide accurate and efficient simulation of physical and engineering problems, especially in settings where the solutions exhibit poor regularity. For these reasons, they have attracted the attention of many researchers working in diverse areas, from computational fluid dynamics, solid mechanics and optimal control, to finance, biology and geology. In this talk, we give an overview of the main features of DG methods and their extensions. We first introduce the DG method for solving classical differential equations. Then, we extend the methods to other equations such as Navier-Stokes equations. The Navier-Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing
    corecore