225 research outputs found

    Face Recognition Under Varying Illumination

    Get PDF
    This study is a result of a successful joint-venture with my adviser Prof. Dr. Muhittin Gökmen. I am thankful to him for his continuous assistance on preparing this project. Special thanks to the assistants of the Computer Vision Laboratory for their steady support and help in many topics related with the project

    Gabor-based Face Recognition with Illumination Variation using Subspace-Linear Discriminant Analysis

    Get PDF
                Face recognition has been an active research topic in the past few decades due to its potential applications. Accurate face recognition is still a difficult task, especially in the case that illumination is unconstrained. This paper presents an efficient method for the recognition of faces with different illumination by using Gabor features, which are extracted by using log-Gabor filters of six orientations and four scales. By Using sliding window algorithm, these features are extracted at image block-regions. Extracted features are passed to the principal component analysis (PCA) and then to linear discriminant analysis (LDA). For development and testing we used facial images from the Yale-B databases. The proposed method achieved 86–100 % rank 1 recognition rate

    Robust face recognition by an albedo based 3D morphable model

    Get PDF
    Large pose and illumination variations are very challenging for face recognition. The 3D Morphable Model (3DMM) approach is one of the effective methods for pose and illumination invariant face recognition. However, it is very difficult for the 3DMM to recover the illumination of the 2D input image because the ratio of the albedo and illumination contributions in a pixel intensity is ambiguous. Unlike the traditional idea of separating the albedo and illumination contributions using a 3DMM, we propose a novel Albedo Based 3D Morphable Model (AB3DMM), which removes the illumination component from the images using illumination normalisation in a preprocessing step. A comparative study of different illumination normalisation methods for this step is conducted on PIE and Multi-PIE databases. The results show that overall performance of our method outperforms state-of-the-art methods

    Performance analysis of different matrix decomposition methods on face recognition

    Full text link

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160
    • …
    corecore