78 research outputs found

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.怀 This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated

    A model for interactive computation : applications to speech research

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 157-159).by Michael K. McCandless.Ph.D

    Modeling and automated synthesis of reconfigurable interfaces

    Get PDF
    Stefan IhmorPaderborn, Univ., Diss., 200

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations

    Applications in computer-assisted biology

    Get PDF
    Biology is becoming a data-rich science driven by the development of high-throughput technologies like next-generation DNA sequencing. This is fundamentally changing biological research. The genome sequences of many species are becoming available, as well as the genetic variation within a species, and the activity of the genes in a genome under various conditions. With the opportunities that these new technologies offer, comes the challenge to effectively deal with the large volumes of data that they produce. Bioinformaticians have an important role to play in organising and analysing this data to extract biological information and gain knowledge. Also for experimental biologists computers have become essential tools. This has created a strong need for software applications aimed at biological research. The chapters in this thesis detail my contributions to this area. Together with molecular biologists, plant breeders, immunologists, and microbiologists, I have developed several software tools and performed computational analyses to study biological questions. Chapter 2 is about Primer3Plus, a web tool that helps biologists to design DNA primers for their experiments. These primers are typically short stretches of DNA (~20 nucleotides) that direct the DNA replication machinery to copy a selected region of a DNA molecule. The specificity of a primer is determined by several chemical and physical properties and therefore designing good primers is best done with the help of a computer program. Primer3Plus offers a user-friendly task-oriented web interface to the popular primer3 primer design program. Primer3Plus clearly fulfils a need in the biological research community as already over 400 scientific articles have cited the Primer3Plus publication. Single nucleotide differences or polymorphisms (SNPs) that are present within a species can be used as markers to link phenotypic observations to locations on the genome. Chapter 3 discusses QualitySNPng, which is a stand-alone software tool for finding SNPs in high-throughput sequencing data. QualitySNPng was inspired by the QualitySNP pipeline for SNP detection that was published in 2006 and it uses similar filtering criteria to distinguish SNPs from technical artefacts like sequence read errors. In addition, the SNPs are used to predict haplotypes. QualitySNPng has a graphical user interface that allows the user to run the SNP detection and evaluate the results. It has already been successfully used in several projects on marker detection for plant breeding. Single nucleotide polymorphisms can lead to single amino acid changes in protein sequences. These single amino acid polymorphisms (SAPs) play a key role in graft-versus-host (GVH) effects that often accompany tissue transplantations. A beneficial variant of GVH is the graft-versus-leukaemia (GVL) effect that is sometimes witnessed after bone marrow transplantation in leukaemia patients. When the GVL effect occurs, the donorā€™s immune cells actively destroy residual tumour cells in the patient. The GVL effect can already be elicited by a single amino acid difference between the patient and the donor. Currently, a small number of SAPs that can elicit a GVL effect are known and these are used to select the right bone marrow donor for a leukaemia patient. Together with researchers at the Leiden University Medical Center I developed a database to aid in the discovery of more such SAPs. We called this database the ā€œHuman Short Peptide Variation databaseā€ or HSPVdb. It is described in chapter 4. The work described in chapter 5 is focused on the regions in bacterial genomes that are involved in gene regulation, the promoters. Intrigued by anecdotal evidence that duplication of bacterial promoters can activate or silence genes, we investigated how often promoter duplication occurs in bacterial genomes. Using the large number of bacterial genomes that are currently available, we looked for clusters of highly similar promoter regions. Since duplication assumes some sort of mobility, we termed the duplicated promoters: putative mobile promoters or PMPs. We found over 4,000 clusters of PMPs in 1,043 genomes. Most of the clusters consist of two members, indicating a single duplication event, but we also found much larger clusters of PMPs within some genomes. A number of PMPs are present in multiple species, even in very distantly related bacterial species, suggesting perhaps that these were subjected to horizontal gene transfer. The mobile promoters could play an important role in the rapid rewiring of gene regulatory networks. Chapter 6 discusses how current biological research can adapt to make full use of the opportunities offered by the high-throughput technologies by following three different approaches. The first approach empowers the biologists with user-friendly software that allows him to analyse the large volumes of genome scale data without requiring expert computer skills. In the second approach the biologist teams up with a bioinformatician to combine in-depth biological knowledge with expert computational skills. The third approach combines the biologist and the bioinformatician in one person by teaching the biologist computational skills. Each of these three approaches has it merits and shortcomings, so I do not expect any of them to become dominant in the near future. Looking further ahead, it seems inevitable that any biologist will have to learn at least the basics of computational methods and that this should be an integral part of biology education. Bioinformatics might in time cease to exist as a separate field and instead become an intrinsic aspect of most biological research disciplines.</p

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC) (EP/D032148)GBUnited Kingdo

    Proceedings of 31st Annual ARCOM Conference, vol 2

    Get PDF

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in ļ¬eld experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction speciļ¬es methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction uniļ¬es different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and veriļ¬ed with proofs of concept and analyses of ļ¬eld experiments. The resulting designs consist of an operating system kernel, a software update method, a data uniļ¬cation interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data uniļ¬cation interface homogenizes the access to the data of heterogeneous sensor networks. A uniļ¬cation model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical ļ¬eld experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the ļ¬eld experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms
    • ā€¦
    corecore