123 research outputs found

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    A New Ant Colony-Based Methodology for Disaster Relief

    Get PDF
    Humanitarian logistics in response to large scale disasters entails decisions that must be taken urgently and under high uncertainty. In addition, the scarcity of available resources sometimes causes the involved organizations to suffer assaults while transporting the humanitarian aid. This paper addresses the last mile distribution problem that arises in such an insecure environment, in which vehicles are often forced to travel together forming convoys for security reasons. We develop an elaborated methodology based on Ant Colony Optimization that is applied to two case studies built from real disasters, namely the 2010 Haiti earthquake and the 2005 Niger famine. There are very few works in the literature dealing with problems in this context, and that is the research gap this paper tries to fill. Furthermore, the consideration of multiple criteria such as cost, time, equity, reliability, security or priority, is also an important contribution to the literature, in addition to the use of specialized ants and effective pheromones that are novel elements of the algorithm which could be exported to other similar problems. Computational results illustrate the efficiency of the new methodology, confirming it could be a good basis for a decision support tool for real operations

    The Multi-Vehicle Probabilistic Covering Tour Problem

    Get PDF

    Applications of biased-randomized algorithms and simheuristics in integrated logistics

    Get PDF
    Transportation and logistics (T&L) activities play a vital role in the development of many businesses from different industries. With the increasing number of people living in urban areas, the expansion of on-demand economy and e-commerce activities, the number of services from transportation and delivery has considerably increased. Consequently, several urban problems have been potentialized, such as traffic congestion and pollution. Several related problems can be formulated as a combinatorial optimization problem (COP). Since most of them are NP-Hard, the finding of optimal solutions through exact solution methods is often impractical in a reasonable amount of time. In realistic settings, the increasing need for 'instant' decision-making further refutes their use in real life. Under these circumstances, this thesis aims at: (i) identifying realistic COPs from different industries; (ii) developing different classes of approximate solution approaches to solve the identified T&L problems; (iii) conducting a series of computational experiments to validate and measure the performance of the developed approaches. The novel concept of 'agile optimization' is introduced, which refers to the combination of biased-randomized heuristics with parallel computing to deal with real-time decision-making.Las actividades de transporte y logística (T&L) juegan un papel vital en el desarrollo de muchas empresas de diferentes industrias. Con el creciente número de personas que viven en áreas urbanas, la expansión de la economía a lacarta y las actividades de comercio electrónico, el número de servicios de transporte y entrega ha aumentado considerablemente. En consecuencia, se han potencializado varios problemas urbanos, como la congestión del tráfico y la contaminación. Varios problemas relacionados pueden formularse como un problema de optimización combinatoria (COP). Dado que la mayoría de ellos son NP-Hard, la búsqueda de soluciones óptimas a través de métodos de solución exactos a menudo no es práctico en un período de tiempo razonable. En entornos realistas, la creciente necesidad de una toma de decisiones "instantánea" refuta aún más su uso en la vida real. En estas circunstancias, esta tesis tiene como objetivo: (i) identificar COP realistas de diferentes industrias; (ii) desarrollar diferentes clases de enfoques de solución aproximada para resolver los problemas de T&L identificados; (iii) realizar una serie de experimentos computacionales para validar y medir el desempeño de los enfoques desarrollados. Se introduce el nuevo concepto de optimización ágil, que se refiere a la combinación de heurísticas aleatorias sesgadas con computación paralela para hacer frente a la toma de decisiones en tiempo real.Les activitats de transport i logística (T&L) tenen un paper vital en el desenvolupament de moltes empreses de diferents indústries. Amb l'augment del nombre de persones que viuen a les zones urbanes, l'expansió de l'economia a la carta i les activitats de comerç electrònic, el nombre de serveis del transport i el lliurament ha augmentat considerablement. En conseqüència, s'han potencialitzat diversos problemes urbans, com ara la congestió del trànsit i la contaminació. Es poden formular diversos problemes relacionats com a problema d'optimització combinatòria (COP). Com que la majoria són NP-Hard, la recerca de solucions òptimes mitjançant mètodes de solució exactes sovint no és pràctica en un temps raonable. En entorns realistes, la creixent necessitat de prendre decisions "instantànies" refuta encara més el seu ús a la vida real. En aquestes circumstàncies, aquesta tesi té com a objectiu: (i) identificar COP realistes de diferents indústries; (ii) desenvolupar diferents classes d'aproximacions aproximades a la solució per resoldre els problemes identificats de T&L; (iii) la realització d'una sèrie d'experiments computacionals per validar i mesurar el rendiment dels enfocaments desenvolupats. S'introdueix el nou concepte d'optimització àgil, que fa referència a la combinació d'heurístiques esbiaixades i aleatòries amb informàtica paral·lela per fer front a la presa de decisions en temps real.Tecnologies de la informació i de xarxe

    The Multi-Depot Minimum Latency Problem with Inter-Depot Routes

    Get PDF
    The Minimum Latency Problem (MLP) is a class of routing problems that seeks to minimize the wait times (latencies) of a set of customers in a system. Similar to its counterparts in the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), the MLP is NP-hard. Unlike these other problem classes, however, the MLP is customer-oriented and thus has impactful potential for better serving customers in settings where they are the highest priority. While the VRP is very widely researched and applied to many industry settings to reduce travel times and costs for service-providers, the MLP is a more recent problem and does not have nearly the body of literature supporting it as found in the VRP. However, it is gaining significant attention recently because of its application to such areas as disaster relief logistics, which are a growing problem area in a global context and have potential for meaningful improvements that translate into reduced suffering and saved lives. An effective combination of MLP\u27s and route minimizing objectives can help relief agencies provide aid efficiently and within a manageable cost. To further the body of literature on the MLP and its applications to such settings, a new variant is introduced here called the Multi-Depot Minimum Latency Problem with Inter-Depot Routes (MDMLPI). This problem seeks to minimize the cumulative arrival times at all customers in a system being serviced by multiple vehicles and depots. Vehicles depart from one central depot and have the option of refilling their supply at a number of intermediate depots. While the equivalent problem has been studied using a VRP objective function, this is a new variant of the MLP. As such, a mathematical model is introduced along with several heuristics to provide the first solution approaches to solving it. Two objectives are considered in this work: minimizing latency, or arrival times at each customer, and minimizing weighted latency, which is the product of customer need and arrival time at that customer. The case of weighted latency carries additional significance as it may correspond to a larger number of customers at one location, thus adding emphasis to the speed with which they are serviced. Additionally, a discussion on fairness and application to disaster relief settings is maintained throughout. To reflect this, standard deviation among latencies is also evaluated as a measure of fairness in each of the solution approaches. Two heuristic approaches, as well as a second-phase adjustment to be applied to each, are introduced. The first is based on an auction policy in which customers bid to be the next stop on a vehicle\u27s tour. The second uses a procedure, referred to as an insertion technique, in which customers are inserted one-by-one into a partial routing solution such that each addition minimizes the (weighted) latency impact of that single customer. The second-phase modification takes the initial solutions achieved in the first two heuristics and considers the (weighted) latency impact of repositioning nodes one at a time. This is implemented to remove potential inefficient routing placements from the original solutions that can have compounding effects for all ensuing stops on the tour. Each of these is implemented on ten test instances. A nearest neighbor (greedy) policy and previous solutions to these instances with a VRP objective function are used as benchmarks. Both heuristics perform well in comparison to these benchmarks. Neither heuristic appears to perform clearly better than the other, although the auction policy achieves slightly better averages for the performance measures. When applying the second-phase adjustment, improvements are achieved and lead to even greater reductions in latency and standard deviation for both objectives. The value of these latency reductions is thoroughly demonstrated and a call for further research regarding customer-oriented objectives and evaluation of fairness in routing solutions is discussed. Finally, upon conclusion of the results presented in this work, several promising areas for future work and existing gaps in the literature are highlighted. As the body of literature surrounding the MLP is small yet growing, these areas constitute strong directions with important relevance to Operations Research, Humanitarian Logistics, Production Systems, and more

    Two-Echelon Vehicle and UAV Routing for Post-Disaster Humanitarian Operations with Uncertain Demand

    Full text link
    Humanitarian logistics service providers have two major responsibilities immediately after a disaster: locating trapped people and routing aid to them. These difficult operations are further hindered by failures in the transportation and telecommunications networks, which are often rendered unusable by the disaster at hand. In this work, we propose two-echelon vehicle routing frameworks for performing these operations using aerial uncrewed autonomous vehicles (UAVs or drones) to address the issues associated with these failures. In our proposed frameworks, we assume that ground vehicles cannot reach the trapped population directly, but they can only transport drones from a depot to some intermediate locations. The drones launched from these locations serve to both identify demands for medical and other aids (e.g., epi-pens, medical supplies, dry food, water) and make deliveries to satisfy them. Specifically, we present two decision frameworks, in which the resulting optimization problem is formulated as a two-echelon vehicle routing problem. The first framework addresses the problem in two stages: providing telecommunications capabilities in the first stage and satisfying the resulting demands in the second. To that end, two types of drones are considered. Hotspot drones have the capability of providing cell phone and internet reception, and hence are used to capture demands. Delivery drones are subsequently employed to satisfy the observed demand. The second framework, on the other hand, addresses the problem as a stochastic emergency aid delivery problem, which uses a two-stage robust optimization model to handle demand uncertainty. To solve the resulting models, we propose efficient and novel solution approaches

    Minimizing latency in post-disaster road clearance operations

    Get PDF
    After a natural disaster, roads and bridges can be damaged or blocked by debris, causing inaccessibility between critical locations such as hospitals, disaster response centers, shelters and disaster-struck areas. We study the post-disaster road clearing problem with the aim of providing a fast and effective method to determine the route of a work troop responsible for clearing blocked roads. The problem is to find a route for the troop that starts at the depot and visits all of the critical locations. The objective is to minimize the total latency of critical nodes, where the latency of a node is defined as the travel time from the depot to that node. A mathematical model for this problem has already been developed in the literature. However, for real-life instances with more than seven critical nodes, this exact formulation cannot solve the problem optimally in a 3-hour limit. To find a near-optimal solution in a short running time, we develop a heuristic that solves a mixed integer program on a transformed network and a lower bounding method to evaluate the optimality gaps. Alternatively, we develop a metaheuristic based on a combination of Greedy Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood Search (VNS). We test both the matheuristic and the metaheuristic on Istanbul data and show that optimal or near-optimal solutions are obtained within seconds. We also compare our algorithms with existing work in the literature. Finally, we conduct an analysis to observe the trade-off between total and maximum latency

    Several approaches for the traveling salesman problem

    Get PDF
    We characterize both approaches, mldp and k-mldp, with several methodologies; both a linear and a non-linear mathematical formulation are proposed. Additionally, the design and implementation of an exact methodology to solve both linear formulations is implemented and with it we obtained exact results. Due to the large computation time these formulations take to be solved with the exact methodology proposed, we analyse the complexity each of these approaches and show that both problems are NP-hard. As both problems are NP-hard, we propose three metaheuristic methods to obtain solutions in shorter computation time. Our solution methods are population based metaheuristics which exploit the structure of both problems and give good quality solutions by introducing novel local search procedures which are able to explore more efficiently their search space and to obtain good quality solutions in shorter computation time. Our main contribution is the study and characterization of a bi-objective problematic involving the minimization of two objectives: an economic one which aims to minimize the total travel distance, and a service-quality objective which aims to minimize of the waiting time of the clients to be visited. With this combination of objectives, we aim to characterize the inclusion of the client in the decision-making process to introduce service-quality decisions alongside a classic routing objective.This doctoral dissertation studies and characterizes of a combination of objectives with several logistic applications. This combination aims to pursue not only a company benefit but a benefit to the clients waiting to obtain a service or a product. In classic routing theory, an economic approach is widely studied: the minimization of traveled distance and cost spent to perform the visiting is an economic objective. This dissertation aims to the inclusion of the client in the decision-making process to bring out a certain level of satisfaction in the client set when performing an action. We part from having a set of clients demanding a service to a certain company. Several assumptions are made: when visiting a client, an agent must leave from a known depot and come back to it at the end of the tour assigned to it. All travel times among the clients and the depot are known, as well as all service times on each client. This is to say, the agent knows how long it will take to reach a client and to perform the requested service in the client location. The company is interested in improving two characteristics: an economic objective as well as a servicequality objective by minimizing the total travel distance of the agent while also minimizing the total waiting time of the clients. We study two main approaches: the first one is to fulfill the visits assuming there is a single uncapacitated vehicle, this is to say that such vehicle has infinite capacity to attend all clients. The second one is to fulfill the visits with a fleet of k-uncapacitated vehicles, all of them restricted to an strict constraint of being active and having at least one client to visit. We denominate the single-vehicle approach the minimum latency-distance problem (mldp), and the k-sized fleet the k-minimum latency-distance problem (k-mldp). As previously stated, this company has two options: to fulfil the visits with a single-vehicle or with a fixed-size fleet of k agents to perform the visits
    corecore