2,359 research outputs found

    Balancing and Sequencing of Mixed Model Assembly Lines

    Get PDF
    Assembly lines are cost efficient production systems that mass produce identical products. Due to customer demand, manufacturers use mixed model assembly lines to produce customized products that are not identical. To stay efficient, management decisions for the line such as number of workers and assembly task assignment to stations need to be optimized to increase throughput and decrease cost. In each station, the work to be done depends on the exact product configuration, and is not consistent across all products. In this dissertation, a mixed model line balancing integer program (IP) that considers parallel workers, zoning, task assignment, and ergonomic constraints with the objective of minimizing the number of workers is proposed. Upon observing the limitation of the IP, a Constraint Programming (CP) model that is based on CPLEX CP Optimizer is developed to solve larger assembly line balancing problems. Data from an automotive OEM are used to assess the performance of both the MIP and CP models. Using the OEM data, we show that the CP model outperforms the IP model for bigger problems. A sensitivity analysis is done to assess the cost of enforcing some of the constraint on the computation complexity and the amount of violations to these constraints once they are disabled. Results show that some of the constraints are helpful in reducing the computation time. Specifically, the assignment constraints in which decision variables are fixed or bounded result in a smaller search space. Finally, since the line balance for mixed model is based on task duration averages, we propose a mixed model sequencing model that minimize the number of overload situation that might occur due to variability in tasks times by providing an optimal production sequence. We consider the skip-policy to manage overload situations and allow interactions between stations via workers swimming. An IP model formulation is proposed and a GRASP solution heuristic is developed to solve the problem. Data from the literature are used to assess the performance of the developed heuristic and to show the benefit of swimming in reducing work overload situations

    A case study at the Nissan Barcelona factory to minimize the ergonomic risk and its standard deviation in a mixed-model assembly line

    Get PDF
    This work examines a balancing problem wherein the objective is to minimize both the ergonomic risk dispersion between the set of workstations of a mixed-model assembly line and the risk level of the workstation with the greatest ergonomic factor. A greedy randomized adaptive search procedure (GRASP) procedure is proposed to achieve these two objectives simultaneously. This new procedure is compared against two mixed integer linear programs: the MILP-1 model that minimizes the maximum ergonomic risk of the assembly line and the MILP-2 model that minimizes the average deviation from ergonomic risks of the set of workstations on the line. The results from the case study based on the automotive sector indicate that the proposed GRASP procedure is a very competitive and promising tool for further research.Peer ReviewedPostprint (published version

    Mixed integer linear programming models for minimizing ergonomic risk dispersion in an assembly line at the Nissan Barcelona factory

    Get PDF
    We present a variant of the approach to the assembly line balancing problems, with the aim of reducing the ergonomic risk for operators of mixed-model assembly lines (MILP-3). Specifically, the MILP-3 model is focused on minimizing the average range between ergonomic risk values of workstations. Using a case study from Nissan’s plant in Barcelona, not only are the differences between levels of ergonomic risk of stations reduced, but we attempt to reduce the average maximum ergonomic risk of the assembly line. The new model is compared with two others, MILP-1 and MILP-2, which minimize the average maximum ergonomic risk and the average absolute deviation of the risks, respectively.Postprint (published version

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    Cost Factor Focused Scheduling and Sequencing: A Neoteric Literature Review

    Get PDF
    The hastily emergent concern from researchers in the application of scheduling and sequencing has urged the necessity for analysis of the latest research growth to construct a new outline. This paper focuses on the literature on cost minimization as a primary aim in scheduling problems represented with less significance as a whole in the past literature reviews. The purpose of this paper is to have an intensive study to clarify the development of cost-based scheduling and sequencing (CSS) by reviewing the work published over several parameters for improving the understanding in this field. Various parameters, such as scheduling models, algorithms, industries, journals, publishers, publication year, authors, countries, constraints, objectives, uncertainties, computational time, and programming languages and optimization software packages are considered. In this research, the literature review of CSS is done for thirteen years (2010-2022). Although CSS research originated in manufacturing, it has been observed that CSS research publications also addressed case studies based on health, transportation, railway, airport, steel, textile, education, ship, petrochemical, inspection, and construction projects. A detailed evaluation of the literature is followed by significant information found in the study, literature analysis, gaps identification, constraints of work done, and opportunities in future research for the researchers and experts from the industries in CSS

    ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem. Formalization and Resolution Procedures

    Get PDF
    Hoy en día, los problemas de equilibrado de líneas de montaje se encuentran comúnmente en la mayoría de sistemas industriales y de manufactura. Básicamente, estos problemas consisten en asignar un conjunto de tareas a una secuencia ordenada de estaciones de trabajo, de manera que se respeten las restricciones de precedencia y se optimice una medida de eficiencia dada (como, por ejemplo, el número de estaciones de trabajo o el tiempo ciclo). Dada la complejidad de los problemas de equilibrado de líneas, en los trabajos de investigación tradicionalmente se consideraban numerosas simplificaciones en las que, por ejemplo, una sola línea serial procesaba un único modelo de un solo producto. Además, los problemas estaban principalmente restringidos por las relaciones de precedencia y el tiempo ciclo. Sin embargo, la disponibilidad de recursos computacionales de hoy en día, así como la necesidad de las empresas a adaptarse a los rápidos cambios en los procesos de producción, han motivado tanto a investigadores como a gerentes a tratar problemas más realistas. Algunos ejemplos incluyen problemas que procesan modelos mixtos, estaciones de trabajo y líneas en paralelo, consideran múltiples objetivos y restricciones adicionales, como la capacidad de proceso de las estaciones de trabajo y la ubicación de los recursos en la línea de montaje.Esta tesis doctoral trata un nuevo problema de equilibrado de líneas, que ha sido titulado ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem, en el que se consideran variantes alternativas para diferentes partes de un proceso de montaje o de manufactura. Cada alternativa puede ser representada por un subgrafo de precedencias, que determina las tareas requeridas para procesar un producto particular, las restricciones de precedencia y los tiempos de proceso. Para resolver eficientemente el ASALBP, se deben resolver dos problemas simultáneamente: (1) el problema de decisión para seleccionar un subgrafo de montaje para cada parte que admite alternativas y (2) el problema de equilibrado para asignar las tareas a las estaciones de trabajo. El análisis del estado del arte revela que este problema no ha sido estudiado previamente en la literatura, lo que ha conducido a la caracterización y a la definición de un nuevo problema. Por otra parte, dado que no es posible representar las variantes de montaje en un diagrama de precedencias estándar, se propone el S-grafo como una herramienta de diagramación, para representar en un único grafo todas las alternativas de montaje.Habitualmente, los problemas de equilibrado de líneas que consideran alternativas de montaje se resuelven en dos etapas. En la etapa inicial, el diseñador de sistema selecciona una de las variantes posibles utilizando cierto criterio de decisión como por ejemplo tiempo total de proceso. Una vez que se han seleccionado las alternativas de montaje, y se dispone de un diagrama de precedencias (es decir, el problema de planificación ha sido resuelto), la línea de montaje es equilibrada en una segunda etapa. Sin embargo, utilizando dicho procedimiento de dos etapas no se puede garantizar que una solución óptima del problema global se pueda obtener, porque las decisiones tomadas por el diseñador de sistema restringen el problema y causan perdida de información; es decir, cuando se selecciona una alternativa priori los efectos de las posibilidades restantes quedan sin explorar. Por ejemplo, si el diseñador de sistema utiliza tiempo total de proceso como criterio de decisión, la alternativa con el tiempo total de proceso más grande será descartada a pesar de que pueda ser la que proporcione la mejor solución del problema (es decir, requiere el mínimo número de estaciones de trabajo o el mínimo tiempo ciclo). Por lo tanto, pareciera razonable considerar que para solucionar eficientemente un ALBP que implica alternativas de proceso, todas las alternativas de montaje deben ser tomadas en cuenta en el proceso de equilibrado. Para este propósito, en esta tesis el problema de selección de una variante de montaje y el problema de equilibrado de la línea se consideran conjuntamente en lugar de independientemente.Para resolver el Problema de Equilibrado de Líneas con Alternativas de Montaje (ASALBP) se usan varios enfoques. El problema se formaliza y se resuelve de manera óptima a través de dos modelos de programación matemática. Un enfoque aproximativo es usado para resolver problemas de tamaño industrial. Además, se proponen procedimientos de optimización local con el objetivo de mejorar la calidad de las soluciones obtenidas por los métodos heurísticos desarrollados en este trabajo.Nowadays assembly line balancing problems are commonly found in most industrial and manufacturing systems. Basically, these problems seek to assign a set of assembly tasks to an ordered sequence of workstations in such a way that precedence constraints are maintained and a given efficiency measure (e.g. the number of workstations or the cycle time) is optimized.Because of the computational complexity of balancing problems, research works traditionally considered numerous simplifying assumptions in which, for example, a single model of a unique product were processed in a single line; moreover, problems were mainly restricted by precedence and cycle time constrains. Nevertheless, the current availability of computing resources and the enterprises need to adapt to rapid changes in production and manufacturing processes have encouraged researchers and decision-makers to address more realistic problems. Some examples include problems that involve mixed models, parallel workstations and parallel lines, multiple objectives and also further restrictions such as workstation processing capacity and resource allocation constraints. This doctoral thesis addresses a novel assembly line balancing problem, entitled here ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem, which considers alternative variants for different parts of an assembly or manufacturing process. Each variant can be represented by a precedence subgraph that establishes the tasks required to process a particular product, their precedence requirements and their processing times. Therefore, to efficiently solve the Alternative Subgraphs Assembly Line Balancing Problem two subproblems need to be solved simultaneously: (1) the decision problem that selects one assembly variant for each part that admit alternatives and (2) the balancing problem that assigns the tasks to the workstations. The analysis of the state-of-the-art carried out revealed that the Alternative Subgraphs Assembly Line Balancing Problem has not been addressed before in literature studies, which leaded to the characterization and definition of this new problem. Moreover, due to the impossibility of representing assembly variants in a standard precedence graph, the S-Graph is proposed here as a diagramming tool to represent all available assembly alternatives in a unique diagram. Habitually, problems involving assembly alternatives are solved by using a two-stage based approach. In the initial stage, the system designer selects one of the possible variants according to criteria such as total processing time. Once the assembly alternatives have been selected, and a precedence graph is available (i.e. the assembly planning problem has been already solved), the line is then balanced in the second stage. However, by following this two-stage procedure it cannot be guaranteed that an optimal solution of the global problem can be obtained, because the decisions taken by the system designer restrict the problem and cause information loss; i.e., a priori selection of an alternative leaves the effects of the other possibilities unexplored. For instance, if the system designer uses total processing time as decision criterion, the alternative with largest total processing time will be discarded notwithstanding it may provide the best solution of the problem (i.e., it requires the minimum number of workstations or minimum cycle time). Therefore, it seems reasonable to consider that to solve efficiently an ALBP that involves processing alternatives all possibilities must be considered within the balancing process. For this purpose, in this thesis both the variant selection problem and the balancing problem are jointly considered instead of independently.Different approaches are used here to address the Alternative Subgraphs Assembly Line Balancing Problem (ASALBP). The problem is formalize and optimally solved by means of two mathematical programming models. An approximate approach is used to address industrial-scale problems. Furthermore, local optimization procedures are proposed aiming at improving the quality of the solutions provided by all heuristic methods developed here

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Aproximações heurísticas para um problema de escalonamento do tipo flexible job-shop

    Get PDF
    Mestrado em Engenharia e Gestão IndustrialEste trabalho aborda um novo tipo de problema de escalonamento que pode ser encontrado em várias aplicações do mundo-real, principalmente na indústria transformadora. Em relação à configuração do shop floor, o problema pode ser classificado como flexible job-shop, onde os trabalhos podem ter diferentes rotas ao longo dos recursos e as suas operações têm um conjunto de recursos onde podem ser realizadas. Outras características de processamento abordadas são: datas possíveis de início, restrições de precedência (entre operações de um mesmo trabalho ou entre diferentes trabalhos), capacidade dos recursos (incluindo paragens, alterações na capacidade e capacidade infinita) e tempos de setup (que podem ser dependentes ou independentes da sequência). O objetivo é minimizar o número total de trabalhos atrasados. Para resolver o novo problema de escalonamento proposto um modelo de programação linear inteira mista é apresentado e novas abordagens heurísticas são propostas. Duas heurísticas construtivas, cinco heurísticas de melhoramento e duas metaheurísticas são propostas. As heurísticas construtivas são baseadas em regras de ordenação simples, onde as principais diferenças entre elas dizem respeito às regras de ordenação utilizadas e à forma de atribuir os recursos às operações. Os métodos são designados de job-by-job (JBJ), operation-by-operation (OBO) e resource-by-resource (RBR). Dentro das heurísticas de melhoramento, a reassign e a external exchange visam alterar a atribuição dos recursos, a internal exchange e a swap pretendem alterar a sequência de operações e a reinsert-reassign é focada em mudar, simultaneamente, ambas as partes. Algumas das heurísticas propostas são usadas em metaheurísticas, nomeadamente a greedy randomized adaptive search procedure (GRASP) e a iterated local search (ILS). Para avaliar estas abordagens, é proposto um novo conjunto de instâncias adaptadas de problemas de escalonamento gerais do tipo flexible job-shop. De todos os métodos, o que apresenta os melhores resultados é o ILS-OBO obtendo melhores valores médios de gaps em tempos médios inferiores a 3 minutos.This work addresses a new type of scheduling problem which can be found in several real-world applications, mostly in manufacturing. Regarding shop floor configuration, the problem can be classified as flexible job-shop, where jobs can have different routes passing through resources and their operations have a set of eligible resources in which they can be performed. The processing characteristics addressed are release dates, precedence constraints (either between operations of the same job or between different jobs), resources capacity (including downtimes, changes in capacity, and infinite capacity), and setup times, which can be sequence-dependent or sequence-independent. The objective is to minimise the total number of tardy jobs. To tackle the newly proposed flexible job-shop scheduling problem (FJSP), a mixed integer linear programming model (MILP) is presented and new heuristic approaches are put forward. Three constructive heuristics, five improvement heuristics, and two metaheuristics are proposed. The constructive heuristics are based on simple dispatching rules, where the main differences among them concern the used dispatching rules and the way resources are assigned. The methods are named job-by-job (JBJ), operation-by-operation (OBO) and resource-by-resource (RBR). Within improvement heuristics, reassign and external exchange aim to change the resources assignment, internal exchange and swap intend changing the operations sequence, and reinsert-reassign is focused in simultaneously changing both parts. Some of the proposed heuristics are used within metaheuristic frameworks, namely greedy randomized adaptive search procedure (GRASP) and iterative local search (ILS). In order to evaluate these approaches, a new set of benchmark instances adapted from the general FJSP is proposed. Out of all methods, the one which shows the best average results is ILS-OBO obtaining the best average gap values in average times lower than 3 minutes
    • …
    corecore