93 research outputs found

    GPU Parallel Implementation of Dual-Depth Sparse Probabilistic Latent Semantic Analysis for Hyperspectral Unmixing

    Get PDF
    Hyperspectral unmixing (HU) is an important task for remotely sensed hyperspectral (HS) data exploitation. It comprises the identification of pure spectral signatures (endmembers) and their corresponding fractional abundances in each pixel of the HS data cube. Several methods have been developed for (semi-) supervised and automatic identification of endmembers and abundances. Recently, the statistical dual-depth sparse probabilistic latent semantic analysis (DEpLSA) method has been developed to tackle the HU problem as a latent topic-based approach in which both endmembers and abundances can be simultaneously estimated according to the semantics encapsulated by the latent topic space. However, statistical models usually lead to computationally demanding algorithms and the computational time of the DEpLSA is often too high for practical use, in particular, when the dimensionality of the HS data cube is large. In order to mitigate this limitation, this article resorts to graphical processing units (GPUs) to provide a new parallel version of the DEpLSA, developed using the NVidia compute device unified architecture. Our experimental results, conducted using four well-known HS datasets and two different GPU architectures (GTX 1080 and Tesla P100), show that our parallel versions of the DEpLSA and the traditional pLSA approach can provide accurate HU results fast enough for practical use, accelerating the corresponding serial versions in at least 30x in the GTX 1080 and up to 147x in the Tesla P100 GPU, which are quite significant acceleration factors that increase with the image size, thus allowing for the possibility of the fast processing of massive HS data repositories

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    A Novel Methodology for Calculating Large Numbers of Symmetrical Matrices on a Graphics Processing Unit: Towards Efficient, Real-Time Hyperspectral Image Processing

    Get PDF
    Hyperspectral imagery (HSI) is often processed to identify targets of interest. Many of the quantitative analysis techniques developed for this purpose mathematically manipulate the data to derive information about the target of interest based on local spectral covariance matrices. The calculation of a local spectral covariance matrix for every pixel in a given hyperspectral data scene is so computationally intensive that real-time processing with these algorithms is not feasible with today’s general purpose processing solutions. Specialized solutions are cost prohibitive, inflexible, inaccessible, or not feasible for on-board applications. Advances in graphics processing unit (GPU) capabilities and programmability offer an opportunity for general purpose computing with access to hundreds of processing cores in a system that is affordable and accessible. The GPU also offers flexibility, accessibility and feasibility that other specialized solutions do not offer. The architecture for the NVIDIA GPU used in this research is significantly different from the architecture of other parallel computing solutions. With such a substantial change in architecture it follows that the paradigm for programming graphics hardware is significantly different from traditional serial and parallel software development paradigms. In this research a methodology for mapping an HSI target detection algorithm to the NVIDIA GPU hardware and Compute Unified Device Architecture (CUDA) Application Programming Interface (API) is developed. The RX algorithm is chosen as a representative stochastic HSI algorithm that requires the calculation of a spectral covariance matrix. The developed methodology is designed to calculate a local covariance matrix for every pixel in the input HSI data scene. A characterization of the limitations imposed by the chosen GPU is given and a path forward toward optimization of a GPU-based method for real-time HSI data processing is defined

    Hyperspectral Unmixing on Multicore DSPs: Trading Off Performance for Energy

    Get PDF
    Wider coverage of observation missions will increase onboard power restrictions while, at the same time, pose higher demands from the perspective of processing time, thus asking for the exploration of novel high-performance and low-power processing architectures. In this paper, we analyze the acceleration of spectral unmixing, a key technique to process hyperspectral images, on multicore architectures. To meet onboard processing restrictions, we employ a low-power Digital Signal Processor (DSP), comparing processing time and energy consumption with those of a representative set of commodity architectures. We demonstrate that DSPs offer a fair balance between ease of programming, performance, and energy consumption, resulting in a highly appealing platform to meet the restrictions of current missions if onboard processing is required

    Improvements to algorithms for hyperspectral linear unmixing based on statistical model

    Get PDF
    Spectral mixing is one of the main problems that arise when characterizing the spectral constituents residing at a sub-pixel level in a hyperspectral scene. In this work we propose a improvement of the algorithms based on statistical model, i.e. NCM, with a novel sampling approach inspired by Genetic Algorithms. Furthermore, linearization is introduced to reduce computational complexity
    corecore