1,319 research outputs found

    Human-robot teamwork: a knowledge-based solution

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresTeams of humans and robots pose new challenges to the teamwork field. This stems from the fact that robots and humans have significantly different perceptual, reasoning, communication and actuation capabilities. This dissertation contributes to solving this problem by proposing a knowledge-based multi-agent system to support design and execution of stereotyped (i.e. recurring) human-robot teamwork. The cooperative workflow formalism has been selected to specify team plans, and adapted to allow activities to share structured data, even during their execution. This novel functionality enables tightly coupled interactions among team members. Rather than focusing on automatic teamwork planning, this dissertation proposes a complementary and intuitive knowledge-based solution for fast deployment and adaptation of small scale human-robot teams. In addition, the system has been designed in order to improve task awareness of each mission participant, and of the human overall mission awareness. A set of empirical results obtained from simulated and real missions proved the concept and the reusability of such a system. Practical results showed that this approach used is an effective solution for small scale teams in stereotyped human-robot teamwork

    Game Engines and MAS: BDI & Artifacts in Unity

    Get PDF
    In questa tesi vedremo un breve sunto riguardo lo stato dei Sistemi Multi-Agente e andremo ad analizzare le limitazioni che attualmente ne impediscono l'utilizzo ai programmatori di videogiochi. Dopodiché, andremo a proporre un nuovo linguaggio BDI, basato su Prolog e inspirato a Jason, che, grazie all'interprete Prolog sviluppato da I. Horswill, darà la possibilità al programmatore di videogiochi di esprimere comportamenti dichiarativi di alto livello per agenti autonomi all'interno del game engine Unity. Andremo anche a proporre una versione di Artefatto per la modellazione dell'ambiente in una scena Unity e un layer di comunicazione che agenti e artefatti possano utilizzare per interagire tra loro. Infine presenteremo un caso di studio per sottolineare i benefici che questo sistema fornisce

    Behavior Trees in Robotics and AI: An Introduction

    Full text link
    A Behavior Tree (BT) is a way to structure the switching between different tasks in an autonomous agent, such as a robot or a virtual entity in a computer game. BTs are a very efficient way of creating complex systems that are both modular and reactive. These properties are crucial in many applications, which has led to the spread of BT from computer game programming to many branches of AI and Robotics. In this book, we will first give an introduction to BTs, then we describe how BTs relate to, and in many cases generalize, earlier switching structures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. Properties such as safety, robustness, and efficiency are important for an autonomous system, and we describe a set of tools for formally analyzing these using a state space description of BTs. With the new analysis tools, we can formalize the descriptions of how BTs generalize earlier approaches. We also show the use of BTs in automated planning and machine learning. Finally, we describe an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion

    roboterfabrik : A Pilot to Link and Unify German Robotics Education to Match Industrial and Societal Demands

    Get PDF
    In this paper we introduce a novel robotics education concept entitled roboterfabrik. This approach is already implemented as a pilot project in the German educational system. Overall, we promote establishing the first generation of robotic natives. For this we need to provide both practical and theoretical experience in robotics to young people and give them access to state-of-the art, high performance yet affordable industrial robotic technology. Specifically, our approach systematically connects different existing school types, universities as well as companies. It comprises specialized lectures at the university, certified workshops and Robothons which are derived from the hackathon concept, and modified to the demand of roboticists

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal

    A survey on the design space of end-user-oriented languages for specifying robotic missions

    Get PDF
    Mobile robots are becoming increasingly important in society. Fulfilling complex missions in different contexts and environments,robots are promising instruments to support our everyday live. As such, the task of defining the robot’s missionis moving from professional developers and roboticists to the end-users. However, with the current state-of-the-art, definingmissions is non-trivial and typically requires dedicated programming skills. Since end-users usually lack such skills, manycommercial robots are nowadays equipped with environments and domain-specific languages tailored for end-users. As such,the software support for defining missions is becoming an increasingly relevant criterion when buying or choosing robots.Improving these environments and languages for specifying missions toward simplicity and flexibility is crucial. To this end,we need to improve our empirical understanding of the current state-of-the-art of such languages and their environments. Inthis paper, we contribute in this direction. We present a survey of 30 mission specification environments for mobile robots thatcome with a visual and end-user-oriented language. We explore the design space of these languages and their environments,identify their concepts, and organize them as features in a feature model. We believe that our results are valuable to practitionersand researchers designing the next generation of mission specification languages in the vibrant domain of mobilerobots
    • …
    corecore