67 research outputs found

    Intrusion Detection System for Platooning Connected Autonomous Vehicles

    Get PDF
    The deployment of Connected Autonomous Vehicles (CAVs) in Vehicular Ad Hoc Networks (VANETs) requires secure wireless communication in order to ensure reliable connectivity and safety. However, this wireless communication is vulnerable to a variety of cyber atacks such as spoofing or jamming attacks. In this paper, we describe an Intrusion Detection System (IDS) based on Machine Learning (ML) techniques designed to detect both spoofing and jamming attacks in a CAV environment. The IDS would reduce the risk of traffic disruption and accident caused as a result of cyber-attacks. The detection engine of the presented IDS is based on the ML algorithms Random Forest (RF), k-Nearest Neighbour (k-NN) and One-Class Support Vector Machine (OCSVM), as well as data fusion techniques in a cross-layer approach. To the best of the authors’ knowledge, the proposed IDS is the first in literature that uses a cross-layer approach to detect both spoofing and jamming attacks against the communication of connected vehicles platooning. The evaluation results of the implemented IDS present a high accuracy of over 90% using training datasets containing both known and unknown attacks

    Localizing Spoofing Attacks on Vehicular GPS Using Vehicle-to-Vehicle Communications

    Get PDF
    GPS spoofing is a problem that is receiving increasing scrutiny due to an increasing number of reported attacks. Plenty of results have been reported on detecting the presence of GPS spoofing attacks. However, very few results currently exist for the localization of spoofing attackers, which is crucial to counteract GPS attacks. In this paper we propose leveraging vehicle-to-vehicle communications to detect and localize spoofing attacks on vehicular navigation GPS. The key idea is to correlate Doppler shift measurements which are reported by most commercial GPS receivers. The approach does not need additional dedicated devices and is easily deployable on modern vehicles equipped with vehicle-to-vehicle communication devices. It is capable of localizing both stationary spoofers and mobile spoofers which could be mounted on a vehicle. Both numerical simulations and experimental tests are conducted to confirm the effectiveness of the proposed approach

    A Low Cost Mass-Market Deployable Security Approach Against GPS Spoofing Attacks

    Get PDF
    The Global Positioning System (GPS) is used ubiquitously for navigation and timing synchronization purposes. Many telecommunication, finance and aviation systems rely heavily on GPS information for routine operations. GPS functions by relying on satellites orbiting the earth in very accurately predictable orbits, which are used as references to identify the positions of objects (receivers). Receivers calculate their positions by receiving GPS signals and calculating their relative distances to each of the satellites. With enough relative distances, the receiver can resolve its position using the method known as trilateration [1]. In this thesis, we underline the vulnerability of this orbiting infrastructure to spoofing attacks, by easily procurable and affordable software defined radios. GPS Signal spoofing is a type of malicious attack, where an attacker generates fake GPS signal with valid GPS properties but false navigational and/or timing information to fool non-suspecting receivers. These signals appear authentic and receivers end up processing the false signal and extracting wrong information. There are two types of GPS services, civilian and military. The military service is encrypted and not vulnerable to such attacks because the pseudorandom codes are not disclosed to the public. However, this service is accessible to authorized military personnel alone. All other commercial and public GPS receivers which form the mass of the population are vulnerable to spoofing attacks. The civilian GPS broadcast band is not encrypted, and this makes it easy for an attacker to recreate the signal that appears valid to GPS receivers. In this thesis we implement a low cost, easy for mass-market application Doppler measurement based spoofing detection approach, utilizing non-specialized off the shelf commercial receivers

    GNSS Signal spoofing detection

    Get PDF
    This thesis elaborates on the implementation of spoofing detection techniques for GPS L1 C/A signals, topic which is up to the minute in the GNSS community. The interest of this topic has its origin on the fact that, currently, there is a large number of applications relying on GNSS communications. Moreover, the public character of the communication details and specifications have exposed the communications to spoofing agents, which, with a relatively cheap equipment, are capable of controlling the tracking loops of a victim receiver and, as a result, manipulate the its timing or navigation solution. In front of this issue, this project aims to contribute on the spoofing detection community by implementing, in the recognized Borre¿s GNSS receiver software, and testing some techniques. To do so, the project is organized in three sections; the preliminary study of the state of the art and the software that will be considered as the starting point, the spoofing signal analysis and the implementation of the selected spoofing detection techniques, and the result¿s evaluation

    Multi-test Detection and Protection Algorithm Against Spoofing Attacks on GNSS Receivers

    Get PDF
    The vulnerability against interference, spoofing, and jamming of GNSS receivers is considered nowadays a major security concern. This security threat is exacerbated with the existing market availability of GPS jamming and spoofing equipment sold at reasonable prices. If jamming is the main issue faced at present, spoofing, which allows hijacking someone from the expected path, may lead to even worse consequences. Even with the latest security measures that are going to be deployed on the Galileo PRS signals, GNSS receivers are prone to attacks that are relatively easy to implement. In this paper, we identify different countermeasures and security schemes that can be used against spoofing attacks. These countermeasures include some modifications on the GNSS receiver's side, rather than requiring modifications of the whole existing GNSS infrastructure. More specifically, we propose a detection and protection scheme consisting of several statistical tests, based on the computations of moving variances of Doppler offset and C/No estimates, together with a consistency test of the PVT computation. We evaluate the performance of the proposed scheme through simulations and using a measurement setup consisting of a Spirent GSS8000 full constellation simulator whose output is combined with the one from a rooftop GPS antenna before being fed to a receiver front-end. Finally, we compute the probability of detection and false alarm in spoofing detection using the proposed scheme

    A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques

    Get PDF
    Unmanned Aerial Vehicles (UAV) have revolutionized the aircraft industry in this decade. UAVs are now capable of carrying out remote sensing, remote monitoring, courier delivery, and a lot more. A lot of research is happening on making UAVs more robust using energy harvesting techniques to have a better battery lifetime, network performance and to secure against attackers. UAV networks are many times used for unmanned missions. There have been many attacks on civilian, military, and industrial targets that were carried out using remotely controlled or automated UAVs. This continued misuse has led to research in preventing unauthorized UAVs from causing damage to life and property. In this paper, we present a literature review of UAVs, UAV attacks, and their prevention using anti-UAV techniques. We first discuss the different types of UAVs, the regulatory laws for UAV activities, their use cases, recreational, and military UAV incidents. After understanding their operation, various techniques for monitoring and preventing UAV attacks are described along with case studies

    GNSS Vulnerabilities and Existing Solutions:A Review of the Literature

    Get PDF
    This literature review paper focuses on existing vulnerabilities associated with global navigation satellite systems (GNSSs). With respect to the civilian/non encrypted GNSSs, they are employed for proving positioning, navigation and timing (PNT) solutions across a wide range of industries. Some of these include electric power grids, stock exchange systems, cellular communications, agriculture, unmanned aerial systems and intelligent transportation systems. In this survey paper, physical degradations, existing threats and solutions adopted in academia and industry are presented. In regards to GNSS threats, jamming and spoofing attacks as well as detection techniques adopted in the literature are surveyed and summarized. Also discussed are multipath propagation in GNSS and non line-of-sight (NLoS) detection techniques. The review also identifies and discusses open research areas and techniques which can be investigated for the purpose of enhancing the robustness of GNSS

    PNT cyber resilience : a Lab2Live observer based approach, Report 1 : GNSS resilience and identified vulnerabilities. Technical Report 1

    Get PDF
    The use of global navigation satellite systems (GNSS) such as GPS and Galileo are vital sources of positioning, navigation and timing (PNT) information for vehicles. This information is of critical importance for connected autonomous vehicles (CAVs) due to their dependence on this information for localisation, route planning and situational awareness. A downside to solely relying on GNSS for PNT is that the signal strength arriving from navigation satellites in space is weak and currently there is no authentication included in the civilian GNSS adopted in the automotive industry. This means that cyber-attacks against the GNSS signal via jamming or spoofing are attractive to adversaries due to the potentially high impact they can achieve. This report reviews the vulnerabilities of GNSS services for CAVs (a summary is shown in Figure 1), as well as detection and mitigating techniques, summarises the opinions on PNT cyber testing sourced from a select group of experts, and finishes with a description of the associated lab-based and real-world feasibility study and proposed research methodology

    Novel Models and Algorithms Paving the Road towards RF Convergence

    Get PDF
    After decades of rapid evolution in electronics and signal processing, the technologies in communications, positioning, and sensing have achieved considerable progress. Our daily lives are fundamentally changed and substantially defined by the advancement in these technologies. However, the trend is challenged by a well-established fact that the spectrum resources, like other natural resources, are gradually becoming scarce. This thesis carries out research in the field of RF convergence, which is regarded as a mean to intelligently exploit spectrum resources, e.g., by finding novel methods of optimising and sharing tasks between communication, positioning, and sensing. The work has been done to closely explore opportunities for supporting the RF convergence. As a supplement for the electromagnetic waves propagation near the ground, ground-to-air channel models are first proposed and analysed, by incorporating the atmospheric effects when the altitude of aerial users is higher than 300 m. The status quos of techniques in communications, positioning, and sensing are separately reviewed, and our newly developments in each field are briefly introduced. For instance, we study the MIMO techniques for interference mitigation on aerial users; we construct the reflected echoes, i.e., the radar receiving, for the joint sensing and communications system. The availability of GNSS signals is of vital importance to the GNSS-enabled services, particularly the life-critical applications. To enhance the resilience of GNSS receivers, the RF fingerprinting based anti-spoofing techniques are also proposed and discussed. Such a guarantee on GNSS and ubiquitous GNSS services drive the utilisation of location information, also needed for communications, hence the proposal of a location-based beamforming algorithm. The superposition coding scheme, as an attempt of the waveform design, is also brought up for the joint sensing and communications. The RF convergence will come with many facets: the joint sensing and communications promotes an efficient use of frequency spectrum; the positioning-aided communications encourage the cooperation between systems; the availability of robust global positioning systems benefits the applications relying on the GNSS service
    corecore